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Mathematical expressions are found for the effect of selection on simple Mendelian populations 
mating at random. Selection of a given intensity is most effective when amphimixis does not affect 
the character selected, e.g. in complete inbreeding or homogamy. Selection is very ineffective on 
autosomal recessive characters so long as they are rare. 

1. Introduction. A satisfactory theory of natural selection must be quantita- 
tive. In order to establish the view that natural selection is capable of 
accounting for the known facts of evolution we must show not only that it can 
cause a species to change, but that it can cause it to change at a rate which will 
account for present and past transmutations. In any given case we must specify 
the following. 

(1) The mode of inheritance of the character considered. 
(2) The system of breeding in the group of organisms studied. 
(3) The intensity of selection. 
(4) Its incidence (e.g. on both sexes or only one). 
(5) The rate at which the proportion of organisms showing the character 

increases or diminishes. 

It should then be possible to obtain an equation connecting (3) and (5). 
The principal work on the subject so far is that of Pearson (1908), Warren 

(1917), and Norton. Pearson's work was based on a pre-Mendelian theory of 
variation and heredity, which is certainly inapplicable to many, and perhaps to 
all characters. Warren has only considered selection of an extremely stringent 
character, whilst Norton's work is as yet only available in the table quoted by 
Punnett. 

In this paper we shall only deal with the simplest possible cases. The 
character dealt with will be the effect of a single completely dominant 
Mendelian factor or its absence. The system of breeding considered will be 
random mating on the one hand or self-fertilization, budding, etc. on the other. 
Moreover we shall confine ourselves to organisms such as annual plants, and 

* Reprinted from Transactions of the Cambridge Philosophical Society, Vol. 23, pp. 19-41 (1924) with the 
permission of Cambridge University Press. 
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many insects and fish in which different generations do not interbreed. Even so 
it will be found that in most cases we can only obtain rigorous solutions when 
selection is very rapid or very slow. At intermediate rates we should require to 
use functions of a hitherto unexplored type. Indeed the mathematical  problems 
raised in the more complicated cases to be dealt with in subsequent papers seem 
to be as formidable as any in mathematical  physics. The approximate solutions 
given in this paper are however of as great an order of accuracy as that of the 
data hitherto available. 

It is not of course intended to suggest that all heredity is Mendelian, or all 
evolution by natural selection. On the other hand we know that besides non- 
Mendelain differences between species (e.g. in chromosome number)  there are 
often Mendelian factor-differences. The former are important  because they 
often lead to total or partial sterility in crosses, but their somatic expression is 
commonly less striking than that of a single factor-difference. Their behaviour 
in crosses is far from clear, but where crossing does not  occur evolution takes 
place according to equations (1)-(3). 

2. Specification on the Intensity of Selection. If a generation of zygotes 
immediately after fertilization consists of two phenotypes A and B in the ratio 
pA: 1B, and the proport ion which form fertile unions is pA: ( 1 -  k)B, we shall 
describe k as the coefficient of selection. Thus if k = 0.01, a population of equal 
numbers of A and B would survive to form fertile unions in the proport ion 
100A:99B, the A's thus having a slight advantage (k may be positive or 
negative; when it is small, selection is slow). When k = 1 no B's reproduce, and 
when k = - Go no A's reproduce. It will be convenient to refer to these two case 
as "complete selection". They occur in artificial selection if the character is well 
marked.  

If the character concerned affects fertility, or kills off during the breeding 
period, we can use just the same notation, in this case each B on the average 
leaves as many offspring as (1 - k)A's, e.g. ifk = 0.01 then 100 B's leave as many 
as 99 A's. The effect is clearly just the same as if one of the B's had died before 
breeding. It will be observed that no assumption is made as to the total number  
of the population. If this is limited by the environment,  natural selection may 
cause it to increase or diminish. It will for example tend to increase if selection 
renders the organism smaller or fitter to cope with its environment in general. If 
on the other hand selection increases its size, or merely arms it in the struggle 
with other members of its species for food or mates, the population will tend to 
diminish or even to disappear. 

Warren (1917) considered the case where the total population is fixed. He 
supposes that the parents produce I times their number of offspring, and that 
type A is p times as numerous as type B, but 1/m as likely to die. In this case it 
can be shown that: 
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k =  ( 1 - 1 ) ( m - 1 ) ( p + l )  
l m - l + p +  1 

Hence the advantage of one type over the other as measured by k is not 
independent of the composition of the population unless m -  1 is very small, 
when k = ( l -  1) ( m -  1) approximately. Hence when selection is slow--the most 
interesting case--the two schemes of selection lead to similar results. On the 
other hand the mathematical treatment of selection on our scheme is decidedly 
simpler. 

3. Familial Selection. The above notat ion may easily be applied to the cases, 
such as Darwinian sexual selection, where one sex only is selected. There is 
however another type of selection which so far as I know has not been 
considered in any detail by former authors, but which must have been of 
considerable importance in evolution. So far we have assumed that the field of 
struggle for existence is the species as a whole, or at least those members of it 
living within a given area. But we have also to consider those cases where the 
struggle occurs between members of the same family. Such cases occur in 
many mammals,  seed-plants, and nematodes, to mention no other groups. 
Here the size of the family is strictly limited by the food or space available for 
it, and more embryos are produced than can survive to enter into the struggle 
with members of other families. Thus in the mouse Ibsen and Steigleder 
(1917) have shown that some embryos of any litter perish in utero. Their 
deaths are certainly sometimes selective. In litters from the mating 
yellow • yellow one-quarter of the embryos die in the blastula stage, yet as 
Durham (1911) has shown, such litters are no smaller than the normal, 
because the death of the Y Y  embryos allows others to survive which would 
normally have perished. 

The above is a case of complete selection. Where the less viable type of 
embryo, instead of perishing inevitably, is merely at a slight disadvantage, it is 
clear that selection will only be effective, or at any rate will be much more 
effective, in the mixed litters. Thus let us consider 3 litters of 20 embryos each, 
the first consisting wholly of the stronger type, the second containing 10 strong 
and 10 weak, the third wholly of the weaker type. Suppose that in each case 
there is only enough food or space for 10 embryos, and that the strong type has 
an advantage over the weak such that, out of equal numbers, 50% more of the 
strong will survive, i.e. k =�89 Then the survivors will be 10 strong from the first 
litter, 6 strong and 4 weak from the second, and 10 weak from the third, or 
16 strong and 14 weak. If the competition had been free, as with pelagic larvae, 
the numbers would have been 18 strong and 12 weak. Clearly with familial 
selection the same advantage acts more slowly than with normal selection, 
since it is only effective in mixed families. 
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The "family" within which selection acts may have both parents in 
common,  as in most mammals,  or many different male parents, as in those 
plants whose pollen, but not seeds, is spread by the wind. In this case the seeds 
from any one plant will fall into the same area, and unless the plants are very 
closely packed, will compete with one another in the main. In rare cases 
familial sexual selection may occur. Thus in Dinophilus the rudimentary 
males fertilize their sisters before leaving the cocoon. Clearly so long as every 
female gets fertilized before hatching selection can only occur in the male sex 
between brothers, and must tend to make the males copulate at as early a date 
as possible. 

The survival of many of the embryonic characters of viviparous animals and 
seed-plants must have been due to familial selection. 

4. Selection in the Absence of Amphimixis. The simplest form of selection is 
uncomplicated either by amphimixis or dominance. It occurs in the following 
cases. 

(1) 
(2) 

(3) 
(4) 

(5) 

Organisms which do not reproduce sexually, or are self-fertilizing. 

Species which do not cross, but compete for the same means of 
support.  

Organisms in which mating is always between brother and sister. 

Organisms like Bryophyta which are haploid during part of the life cycle, 
provided that selection of the character considered only occurs during 
the haploid phase. 

Heterogamous organisms in which the factor determining the character 
selected occurs in the gametes of one sex only. For example Renner 
(1917) has shown that Oenothera muricata transmits certain characters 
by the pollen only, others by the ovules only. Schmidt (1920) has found a 
character in Lebistes transmitted by males to males only, and 
Goldschmidt (1920) has postulated sex-factors in Lymantria transmitted 
only by females to females. As far as the characters in question are 
concerned there is no amphimixis, and these organisms behave as if they 
were asexual. Other species of Oenothera which are permanently 
heterozygous for other reasons would probably be selected in much the 
same way. 

Let the n th generation consist of types A and B in the ratio u,A: 1B, and let the 
coefficient of selection be k, i.e. (1-k)B 's  survive for every A. Then the 
survivors of the n th generation, and hence the first numbers of the (n + 1)th, with 
be u,A : (1 - k )B. Therefore: 
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u~ (1) U"+l - 1 - k '  

and if u 0 be the original ratio u ,=  ( 1 - k ) - " u  o . 

Now if we write y, for the proportion of B's in the total population of the n th 

generation: 
1 1 Yo 

Y " - l + u ~ - l + ( 1 - k ) - " u  o y o + ( 1 - k ) - " ( 1 - y o ) '  

or if we start with equal numbers of A and B, Yo =�89 and: 

1 
Y~- 1 + ( I - k ) - "  (2) 

If k is very small, i.e. selection slow, then approximately: 

o r :  

1 
Y" - 1 + e kn 

(3t 

Hence the proportion of B's falls slowly at first, then rapidly for a short time, 
then slowly again, the rate being greatest when y = �89 Before y 1 = 3, n is ofcourse 
taken as negative. So long as k is small the time taken for any given change in 
the proportions varies inversely as k. The curve representing graphically the 
change of the population is symmetrical about its middle point, and is shown in 
Fig. 1 for the case where k=0.001, i.e. 999 B's survive for every 1000 A's. 9184 

lO0 

~ 50 

o 

o 
- 5000 0 +5000 

Generations 

F i g u r e  1. Effect o f  se lec t ion  o n  a n o n - a m p h i m i c t i c  cha rac t e r ,  k = 0 . 0 0 1 .  
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generations are needed for the proportion of A's to increase from 1 to 99%. 
Equation (3) gives an error of only four in this number. 

As will be shown below, selection proceeds more slowly with all other 
systems of inheritance. In this case the speed must compensate to some extent 
for the failure to combine advantageous factors by amphimixis. Where 
occasional amphimixis occurs, as for example in wheat, conditions are very 
favourable for the evolution of advantageous combinations of variations. 

5. Selection of a Simple Mendelian Character. Consider the case of a 
population which consists of zygotes containing two, one, or no "doses" of a 
completely dominant Mendelian factor A, mating is at random, and selection 
acts to an equal degree in both sexes upon the character produced by the factor. 
Pearson (1904) and Hardy (1908) have shown that in a population mating at 
random the square of the number of heterozygotes is equal to four times the 
product of the numbers of the two homozygous classes. Let u,,A: la be the 
proportion of the two types of gametes produced by the ( n - 1 )  th generation. 
Then in the n th generation the initial proportions of the three classes of zygotes 
are: 

u2, AA: 2u.Aa: laa. 

The proportion of recessives to the whole population is: 

y. = (1 + u.) -2 (4) 

Now only (1 - k )  of the recessives survive to breed, so that the survivors are 
in the proportions: 

u2.AA:2u.Aa: (1 - k)aa. 

The numbers of the next generation can be most easily calculated from the 
new gametic ratio u,+ 1. This is immediately obvious in the case of aquatic 
organisms which shed their gametes into the water. If each zygote produces N 
gametes which conjugate, the numbers are clearly: 

(Nu2~ + Nu,)A, and (Nu, + N1 - k)a. 

So the ratio: 

u.(1 + u.) (5) 
u " + l -  l + u . - k "  

It can easily be shown that this result follows from random mating, for 
matings will occur in the following proportions: 

2 2 4 AA • AA  u. • u. or u . ,  

2 X 2U n or 4u 3, AA x Aa and reciprocally, 2 x u, 



or: 

where: 
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2 ( l - k )  or 2 ( 1 - k ) u  2, AA  x aaand reciprocally, 2 x u. x 

Aa x Aa 2u. x 2u. or 4u. 2, 

A a x a a a n d  reciprocally, 2 x 2 u .  x ( 1 - k )  or 4 ( 1 - k ) u . ,  

a a x a a  ( 1 - k ) x ( 1 - k )  or ( l - k )  2. 

Hence zygotes are formed in the following proportions: 

AA 4 3 2 u n + 2 u  n + u n or 

Aa 3 2 2 2u. + 2 ( 1 - k ) u .  +2u .  + 2 ( 1 - k ) u .  or 

aa uZ. + 2 ( 1 - k ) u . + ( 1 - k )  2 or 

These ratios may be written: 

I u.(1 + u.)-] 2 2u.(1 + u.) 
1-+u-~-kj  AA: l + u . - k  Aa: laa, 

u .(1 +u.) 2, 

2u.(1 + u.) (1 + u. - k), 

(1 + u . - k )  2. 

u.+Z 1AA:2U.+ lAa:laa,  

u.(l+u.) 
u " + l -  l + u . - k '  

as above. It is however simpler to obtain u. + 1 directly from the ratio of A to a 
among the gametes of the population as a whole, and this will be done in our 
future calculations. 

Now if we know the original proport ion of recessives Yo, we start with a 
population: 

where: 

and we can at once calculate: 

u~ AA  : 2uoAa: l aa, 

Uo = Yo 1/2 _ 1, 

Uo(1 + Uo) 
u 1 - 1 + u o _ k ,  
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and thence 1"/2 and so on, obtaining y~, Y2, etc. from equation (4). Thus if we 
start with 25% of recessives, and k=0 .5 ,  i.e. the recessives are only half as 
viable as the dominants,  then u o = 1, and: 

1(1+1)  4 

ux - 1 + 1 - - ~ -  3 '  

Yl = ( 1 + ~ - ) - 2 = 9 = 0 . 1 8 4 ,  or 18.4% . 

Similarly y2 = 13.75%, y3 = 10.9%, and so on. Starting from the same 
population, but  with k = - 1 ,  so that the recessives are twice as viable as the 
dominants,  we have y 1 = 3 6 % ,  y 2 = 4 9 . 8 % ,  y 3 = 6 4 . 6 % ,  y 4 = 7 7 . 5 % ,  y5 = 
87.0%, and so on. If k is small this method becomes very tedious, but  we can 
find a fairly accurate formula connecting Yn with n. 

The case of complete selection is simple. If all the dominants are killed off or 
prevented from breeding we shall see the last of them in one generation, and 
yn= 1. Punnett  (1917) and Hardy  (1908) have solved the case where the 
recessives all die. Here k = 1, and: 

Un(1 + Un) -- 1 + u n . 
Un+ 1 -- 1 +Un__ 1 

. .  Un -~- n + U O" 

. .  y n = ( n + l + u o )  - 2  

= ( n + y 0 1 / 2 )  - 2  

= yo(1 + nyU)-2 (6) 

Thus if we start with a populat ion containing �88 recessives the second 
generation will contain 6, the third ~ ,  the n TM 1/ (n  + 1) 2. Thus 999 generations 
will be needed to reduce the proport ion to one in a million, and we need not 
wonder that recessive sports still occur in most  of our domestic breeds of 
animals. 

When selection is not very intense, we can proceed as follows: 

u n ( l + U n ) .  

Un+l l + U n _ _  k ' 

k u  n 

"" A u n - U n + l - u n -  l + u n - k "  
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When k is small we can neglect it in comparison with unity, and suppose that 
u, increases continuously and not by steps, i.e. take Au, = du,,/dn. 

du, ku, approximately; 
�9 " d n  1 + u .  

fu % l + u  .. kn = - - d u  
o IX 

(:o) = u . - - u o + l o g  ~ . (7) 

If we start from or work towards a standard population containing 25% of 
recessives, and hence u o = 1, we have: 

kn = u, + logeu . - 1. (8) 

This equation is accurate enough for any practical problem when ]k] is small, 
and as long as k lies between + 0.1, i.e. neither phenotype has an advantage of 
more than 10%, it may be safely used. When ]k] is large the equatiom 

kn = u, + (1 - k)logeu, - 1, (9) 

is fairly accurate for positive values of n. Thus when k = �89 the error is always 
under 4%. For  large values of Ikl and negative values of n the equation: 

k 1 k n = u , + ( 1 - ~ )  OgeU,-- 1, (10) 

gives results with a very small error. But for every case so far observed 
equation (8) gives results within the limits of observational error. 

In the above equations we have only to make k negative to calculate the 
effects of a selection which favours recessives at the expense of dominants.  For  
the same small intensity of selection the same time is clearly needed to produce 
a given change in the percentage of recessives whether dominants or recessives 
are favoured. Figure 2 shows graphically the rate of increase of dominants and 
recessives respectively when k=-t-0.001, i.e. the favoured type has an 
advantage of one in a thousand, as in Fig. 1. In each case 16 582 generations are 
required to increase the proportion of the favoured type from 1 to 99%, but 
dominants increase more rapidly than recessives when they are few, more 
slowly when they are numerous. The change occurs most rapidly when y,,  the 
proportion of recessives, is 56.25%. When selection is 10 times as intense, the 
population will clearly change 10 times as fast, and so on. 

In Table 1 the values o fy ,  calculated from equations (4) and (8) are given in 
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Figure 2. Effect of selection on an  au tosomal  Mendel ian  character ,  k = 0.001. Uppe r  
curve, dominan t s  favoured; lower curve, recessives favoured. 

terms of kn. In Table 2 kn is given in terms of y,. The number of generations 
(forwards or backwards) is reckoned from a standard population containing 
75 % of dominants and 25 % of recessives. A few examples will make the use of 
these tables clear. 

(1) Detlefsen (1918) has shown that in a mixed population of mice about 
95.9 without the factor G, causing light bellies and yellow-tipped hair, 
survive for every 100 with it. Hence k = 0.041. It is required to find how 
many recessives will be left after 100 generations, starting from a 
population with 90% of recessives, and assuming that different 
generations do not interbreed. 

From Table 2, when y=0.9 ,  kn=-3.863, .'. n = - 9 4 . 2 .  So 94.2 
generations of selection will bring the recessives down to 25%. The 
remaining 5.8 generations give kn=0.238, and from Table 1 by 
interpolation we find y = 0.224, i.e. only 22.4% of recessives remain. 

(2) In the same case how many generations are needed to reduce the number 
of recessives to 1%? y,=0.01,  hence, from Table2,  kn=10.197, 
.'. n = 248.7. So 248.7 generations after 25% is reached, or 343 in all, will 
be required. 

(3) The dominant melanic form doubledayaria of the peppered moth 
Amphidasys betularia first appeared at Manchester in 1848. Some time 
before 1901 when Barrett described the case, it had completely ousted the 
recessive variety in Manchester. It is required to find the least intensity of 
natural selection which will account for this fact. 

Assuming that there were not more than 1% of dominants in Manchester in 
1848, nor less than 99% in 1898, we have, from Table 2, kn= 16.58 as a 
minimum. But n=50 ,  since this moth usually has one brood per year. 
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Therefore k = 0.332 at least, i.e. at least 3 dominants must survive for every 2 
recessives, and probably more; or the fertility of the dominants must be 50% 
greater than that of the recessives. Direct calculation step by step from 
equation (5) shows that 48 generations are needed for the change if k=0.3.  
Hence the table is sufficiently accurate. After only 13 generations the 
dominants would be in a majority. It is perhaps instructive, in view of the fact 
that attempts have been made to explain such cases by epidemics of mutat ion 
due either to the environment or to unknown causes, to note that in such a case 
one recessive in every five would have to mutate to a dominant.  Hence it would 
be impossible to obtain true breeding recessives as was done by Bate (1895). 
Another possible explanation would be a large excess of dominants begotten in 
mixed families, as occurs in human night-blindness according to Bateson. But 
this again does not agree with the facts, and the only probable explanation is 
the not very intense degree of natural selection postulated above. 

6. Familial Selection of a Simple Mendelian Character. Consider the case of 
a factor A whose presence gives any embryo possessing it an advantage 
measured by k over those members of the same family which do not possess it. 
In this case the Pearson-Hardy law does not  hold in the population.  Each 
family may have both parents in common,  as in mammals,  or only the 
mother,  as in cross-pollinated seed-plants. In the first case let the populat ion 
consist of: 

p,AA: 2q,Aa: r, aa, where p, + 2q, + r, = 1. 

Then in a mixed family where equality was to be expected the ratio of 
dominants to recessives will be 1 : 1 - k .  But since the total is unaltered, the 
actual number of dominants will be to the expected as 2: 2 -  k, of recessives as 
2 -  2k: 2 - k, and similarly for a family where a 3:1 ratio was to be expected. The 
r/th generation mating at random will therefore produce surviving offspring in 
the following proportions: 

From mating: 

A A  Aa aa 

A A  x A A  p2 0 0 

A A  x Aa 2p.q. 2p.q. 0 

A A  x aa 0 2p.r. 0 

4q 2 8q 2 (4 -4k)q .  2 
Aa x Aa 

4 - k  4 - k  4 - k  

2q.r. (2-- 2k)q.r.  
Aa x aa 0 

2 - k  2 - k  

2 aa x aa 0 0 r. 
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. .  [AA] = P.+ I = (p. + q.)2 -~ 4kq~k 

�89  4q-~"k +~--;-~ (1 1) - �9 

= r  _ i n  + r ' 2  k f 3 q .  2 r . \  
[aa] n + l - - t ~ / . . ]  -- q.~S~_k + 2---L-~) 

__ 2 With complete selection, when k = 1, we have r. + 1 - r . ,  so the propor t ion  of 
recessives, starting from �88 will be 1 1 etc., in successive generations, 1 6 ,  6 4 ,  

provided of course that  all-recessive families survive, as in Oenothera. So 
recessives are eliminated far more  quickly than in the ordinary type of selection. 
Clearly however dominants  are not  eliminated at once when k - - -  
(provided that  they survive in al l -dominant  families), for: 

P.+ 1 =p. (1  - -r . )=p.p ._  1(2--p._ 1)- 

Starting from the s tandard popula t ion,  successive propor t ions  of recessives are 
25%, 56.25%, 66.02%, 84.25%, etc. 

In the more  interesting case when k is small we can solve approximately,  as 
follows. F r o m  equat ion (11) we see that  q.+2 a - P . +  lr .+ 1 and hence q2 _ p.r. is 
a small quant i ty  of the order kq 2, i.e. is less than k. Hence if we write 
u. = (p. + q.)/(q. + r.), then q. only differs from u./(1 + u.) 2 by a small quant i ty  
of the order of k. 

Now: 
Pn+l +qn+l 

Un+ 1 - -  
q n + l  "~-/'n + 1 

approximatel  
q. + r. -- ~Kq.tq. + r.) 

_ u. + �89 

1- �89  

= u. + �89 + u,) approximately 

ku~ 
= u. + 2(1 + u.~" 

(12) 

Solving as for equat ion (5) we find: 
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�89 = u. + logeu. -- I. (13) 

And since as above r. (the propor t ion  of recessives) = (1 + u.) - 2, it follows 
that  the species changes its composi t ion at half the rate at which it would 
change if selection worked on the species as a whole, and not  within families 
only. 

If each family has its mother  only in common,  but  the fathers are a r andom 
sample of the populat ion,  we assume the n th generation to consist of: 

PnAA : 2q.Aa: r.aa, where p. + 2q. + u. = 1. 

_ u n 1 Let u. P" + q" hence p. + qn = - - ,  q. + r. - 
q . + r .  ' 1 +u.  1 +u.  

Then families will be begotten as follows: 

AA Aa aa 

From AA females: p.u. p. 0 
l + u .  l + u .  

From Aa females: q.u. q. q. 
1 +u.  1 +u.  

From aa females: 0 r.u. r. 
l + u .  l + u .  

After selection and replacement the propor t ions  will be: 

AA Aa aa 

From AA females: p.u. p. 0 
1 +u. 1 +u.  

From Aa females: q.u,, q.(1 +u.) q.(1 - k )  
l + u . - � 8 9  l+u.-�89 l+u.-�89 

From aa females: 0 r.u. r.(1 - k) 
l + u . - k  l + u . - k  

With complete selection, where k =  1, recessives are eliminated at once, 
provided families are large enough.  Where k = -  oo, dominants  are not  
eliminated at once if pure dominan t  families survive, since p . + x = p . ( 1 -  
p.)/(1 + p.). Starting from the s tandard popula t ion,  successive values of r. are 
25~ 75%, 87.5%, 99.7%, etc. When  k is small were obtain approximate  
equations analogous to equat ion (11) whose solution is: 

�88 = u,, + logeu . - 1. (14) 

Thus  selection proceeds at 3 of the rate given by equat ion (8). 
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7. Sex-Limited Characters and Unisexua l  Selection.  We have next to deal with 
characters which only appear in one sex, for example milk yield or other 
secondary sexual characters; or on which selection at least is unisexual, as for 
example in Darwinian sexual selection. Let the ( n - 1 )  th generation form 
spermatozoa in the ratio u,A: la ,  eggs in the ratio v,A:la .  Then the n th 
generation consists of zygotes in the ratios: 

u,v ,AA : (u, + v,)Aa: laa, 

. .  y n = ( l + u n ) - l ( l + v , )  -1 (15) 

If only 1 - k  recessive ~ survives for every dominant  ~, whilst g's are not  
affected by selection, we have: 

2UnV n + ttn -}- V n ) 

Un+ 1 = Un_}_Vn+ 2 
�9 (16) 

2UnV n --1- U n + V n 
v,,+ 1 = ~ Z 2 k  

With complete selection, when k = - ~ ,  and all dominants of one sex are 
weeded out, we have v ,=0 ,  and u,+ 1 =u , / (2+u. ) .  

and: 

u=? 1(, +1) 11, 
y, = 1 + 21 -,(y~/2 _ 1). (17) 

Hence the pi'oportion of dominants is halved in every successive generation. 
When k = 1, and all the recessives of one sex die childless, the proportions of 
recessives in successive generations, starting from the standard population, are 
25%, 16.7%, 12.5%, 9.56%, 7.94%, and so on. 

When k is small, since: 

and: 

2k(2u,v, + u, + v.) 
Vn+I--Un+I ( u . + v . + 2 ) ( u . + v . + 2 - 2 k )  

AUn = (1 + U.) (V.-- Un) 
Un+V,+2 

and hence the differences between u,, u,+ 1, v,, v.+ 1 may be neglected in 
comparison with themselves: 
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and: 

ku. approximately, �9 . v . - u  n - l + u .  

Au. - ku, approximately. 
2 ( l + u . )  

�9 �89 = u . + l o g e u . - 1 ,  (18) 

and selection proceeds at half the rate given by equation (8), a result stated by 
Punnett .  

8. Selection of an Alternatively Dominant Character. A few factors, such as 
that determining the presence or absence of horns in Dorset and Suffolk sheep, 
according to Wood  (1905) are dominant  in one sex, recessive in the other. 
Consider a factor dominant  in the male sex, recessive in the female. Let the n th 
generation be produced by: 

spermatozoa u,,A: la,  eggs v.A: la. 
It consists of: 

zygotes: u.v .AA:  (u. + v.)Aa: laa, 

and the survivors after selection are in the ratios: 

unvnAA: (u n + vn)Aa:'(1 - k)aa, 

UnVn A A  
~ ~ - k  : (u .+ v.)Aa: laa, 

2UnV n + U n -F V n 
�9 " u , + x - u . + v . + 2 _ 2 k  

2 
1 -- k unvn + un + v. 

On+ 1 
Un+Vn+ 2 

Whilst: 

(19) 

y.(for males) = (1 + u.) - 1 (1 + v.) - x. (20) 

With complete selection, when all members of the type dominant  in the 
female sex are weeded out, k = 1. 

�9 v. + t = 0% and u. + x = 1 + 2u., after the first generation. 

. .  1 + u . = 2 " - a ( l + u 0 ,  
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and if z n be the proportion of the weeded out type occurring in the female sex: 

. .  y . = 0  ] 
(21) ; Zn=21-nz1 

So this type disappears in the male sex, and is halved in successive female 
generations. If k = ~ the type recessive in the female sex disappears in that sex 
and is halved in successive male generations�9 

When k is small: 

and Au. = �89 

O n + l - - U n + l  - -  

ku . (u . -  1) 

l + u .  
approximately, 

�9 kn = 2 logeu . (22) 

if u 0 = 1, so selection occurs on the whole more rapidly than by equation (8) 
(see Table 5); y, is given by equation (4). 

9. Sex-Linked Characters Under No Selection. The events in an unselected 
population whose members differ with regard to a sex-linked factor have been 
considered by Jennings (1915) but can be treated more simply. We suppose the 
male to be heterozygous for sex, but the argument is the same where the female 
is heterozygous. Consider a fully dominant factor A, such that the female may 
be AA, Aa, or aa, the male Aa or aa (or in Morgan's notation, which will be 
adopted, A or a). As Jennings showed, a population with: 

~'s u2AA:2uAa: laa; c~'s uA: la, 

is stable during random mating, and other populations approach it 
asymptotically. In any population let the eggs of the ( n -  1)th generation be 
u.A: la, the ~-producing spermatozoa v.A: la. The the n TM generation will be: 
~_'s u.v.AA: (u,, + v,,)A a: 1 aa; c~'s u.A: 1 a. 

2u.v. + u. + v,, ] 
"" u " + l =  2 + u . + v .  l '  (23) 

On + 1 ~--- Un 

and if y. be the proportion of recessive ?'s, z. of recessive c~'s: 

Yn=(l +u")-a(l  +v")-I  } .  
z . = ( l + u . )  -1 

(24) 
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2(1 + u . )  (1 + u . _ O _  2 
z.+11 = 1 + u. + 1 = 2 + u . -  u._ 1 z. + z._ 1 

2Zn = Z n _  1 -'['- Zn _ 2 . 

Solving as usual for recurring series, we have: 

3Zn= Zo + 2Z 1 + (-- �89 221) 
(25) 

Yn = ZnZ n - 1 

.. Zoo=~(Zo+2Zl)=�89 ]. 
(26) 

2 
Yoo = Z o o  

Hence from the proport ion of males in two successive generations, or both 
sexes in one, we can calculate the final values�9 Successive values of y. and z. 
oscillate alternately above and below their final values, but converge rapidly 
towards them. 

10. Bisexual Selection of  a Sex-Linked Character. If the conditions are as 
above, except that in each generation one dominant  survives for every ( 1 -  k) 
recessives in each sex, then: 

2UnV n + U n "1- V n ) 

u.+ 1 = u. + v. + 2-- 2k l ' (27) 
U n 

V"+x - 1 - k  

and: 

Y"=(I +un)-x(I +v")-a } .  

z . = ( l + u . )  -1 

With complete selection if k = -  m,  and no dominants survive to breed, 
selection is complete in one generation. If k = 1, and no recessives survive to 
breed: 

and: 

un + x = 1 + 2Un, and v. = ~ .  

�9 1 + u. = 2"(1 + Uo) , 

z. = 2 -"z o 

J 
o 

y . = O  
(28) 
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So no recessive females are produced and the number  of recessive males is 
halved in each generation. Selection is therefore vastly more effective than on 
an autosomal character. If eolour-blind or haemophilic persons were 
prevented from breeding, these conditions could be almost abolished in a few 
generations, which is not  the ease with feeble-mindedness. If selection is slow 
we solve as for equation (16), and find approximately: 

2ku 2 
v" - un 3 + 3U n ' 

Au. - ku.(3 + u.) 
3 + 3u. 

So, reckoning generations to or from a standard population where u o = 1, 
and 50% of the males and 25% of the females are recessives: 

, /'3 + u.'~ 
kn=logeu.+ 2 , o g ~ ) ,  (29) 

y. = (1 + u . ) - 2  (30) 
z . =  (1 + u . ) -  1 J 

Table 3 and Fig. 3 are calculated from these equations. Within the limits 
covered by the figure selection acts more rapidly on a sex-linked character in 
the homozygous sex than on an autosomal character. In the heterozygous sex 
selection occurs at about the same rate in the two cases. However, as appears 
from Table 5, sex-linked recessive characters increase far more rapidly in the 
early stages, and sex-linked dominants in the late stages of selection, the 
autosomal characters. 

Table 3 is not  quite accurate unless selection is very slow, the error being of 
the order ofk. Thus when k = 0.2 the error in n is nearly 10%. Still even for these 
large values it furnishes a useful first approximation. 

11. Bisexual Familial Selection of a Sex-Linked Character. Here we need only 
consider the case where the family within which selection occurs has both 
parents in common.  Sex-linkage of the animal type is rare in plants, and 
families with many fathers per mother  are rare in animals, Let the /,/th 
generation be: 

~_ p.AA:2q.Aa:r.aa; c~ s.A:t.a, 

where p. + 2q. + r. = s. + t. = 1. Let the dominants have an advatage of 1: 1 - k 
over the recessives in the mixed families. Then the (n + 1)th generation occurs in 
the following proportions, after selection has operated: 
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Figure 3. Effect of selection on a sex-linked character, k=0.001.  Dominan ts  

favoured. Upper  curve, homozygous sex; lower curve, heterozygous sex. 

F rom mating AA ~. Aa ~. aa ~_ A 3 a 3 

AA  x A p,s, 0 0 p,s, 0 

2q~s~ 2(1 - k )q,s, 
Aa x A q,s, q.s. 0 2-- k 2 -  k 

aa x A 0 r,s, 0 0 r,s, 

A A  x a 0 p,t ,  0 p,t ,  0 

Aa x a 0 2q.t. 2(1 - k)q,t, 2q.t. 2(1 - k)q,t,  

2 - k  2 - k  2 - k  2 - k  

aa • a 0 0 rnt ~ 0 r.t. 

Hence,  writing k' = k / 2 -  k: 

P. + l = (P. + qn)S. 

2qn+l = (p. + q . ) t .  + (q. + r.)sn + k' q . t .  

r.+ 1 = (q~ + r . ) t .  - k' q . t .  

s.  + 1 = P. + q.  + k' q.  

t .  + 1 = q .  + r .  - k' q .  

With complete selection, when the recessives are eliminated, k ' =  k = 1, and: 

Fn + 1 ~- Fntn, 

tn+ 1 = rn, 

�9 . . ~ b ( n +  1) t~b(n)  
�9 " I n  ~ / 0  ~ 0  ' 

where: 

(31) 
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2 m n 

~b(n) = ~ [(1 + X/5)n--(1 -- X/5)"], (32) 

i.e. ~b(n) is the n th term of Fibonnacci's series 1, 2, 3, 5, 8, 13, 21, etc. So the 
recessives disappear very fast. When dominants are eliminated k ' = -  1, 
k-- - oo, and the equations are less tractable. The percentages of recessives in 
succedding generations, starting from a standard population, are: 

25 37.5 56.25 66.80 82.97 etc. 

50 75 75 89.06 93.16 etc. 

When k is small we solve as in equation (11), and find: 

k'u(2 + u) approximately. Aun = 3+3u  

.. kn=3 lOgelUn(2;Un)ll 

rn=(l+Un) -2 ~ ,  (33) 

tn----(l+Un) -t J 

starting from the standard population, and pn, qn have very nearly the values 
for a population in equilibrium. Selection therefore proceeds much as in racial 
selection but at from a half to a third of the rate. Some figures are given in 
Table 5. 

12. Selection of a Sex-Linked Character in the Homozygous Sex Only. Several 
sex-linked factors are known which have a much more marked effect on the 
homozygous than the heterozygous sex. Thus in Drosophila melanogaster 
"fused" females are sterile, males fertile; whilst the character "dot" occurs in 8 % 
of the genetically recessive females, but only 0.8% of the males (Morgan and 
Bridges, 1916). But the chief evolutionary importance of this type of selection 
must have been in the Hymenoptera and other groups where the males are 
haploid and all amphimictic inheritance sex-linked. The characters of the 
diploid females and neuters are generally more important (especially in the 
social species) than those of the males. On the other hand it must be 
remembered that for a few drone characters selection must be very intense, and 
largely familial. Using the usual notation: 

2unv n + u n + vn 

Un+l =Un+Vn+ 2--2k l" (34) 

Vn + 1 = Un 
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With complete selection, if all dominants are eliminated and k = - 0o, all 
dominants disappear in two generations. If all recessives are eliminated k = 1, 
and starting with a standard population the percentages of recessives in 
successive generations are: 

(heterozygous sex) 50 33.3 30 23.2 21.4 18.6 

(hom0zygous sex) 25 16.7 10 6.96 5.14 3.95. 

So elimination is vastly slower than when selection occurs in both sexes 
I-equation (29)]. When k is small we solve as in equation (27), and find: 

2 k u ,  approximately. 3Au. - 1 + u. 

�9 ~kn = un + logeu . -  1, (35) 

y , =  (1 +u, )  -z }.  

z n = (1 +Un) -1  

SO selection of the homozygotes proceeds as in Fig. 2 and Tables 1 and 2, but 
1.5 times as many generations are needed for a given change. The heterozygous 
sex changes rather more slowly. 

13. Selection of a Sex-Linked Character in the Heterozygous Sex Only. In 
certain cases sex-linked factors appear only or mainly in the heterozygous sex. 
Thus in Drosoph i la  me lanogas t e r  "eosin" eye-colour is far more marked in the 
male than the female, and the sex-linked fertility factor L 2 postulated by Pearl 
(1912) in poultry can only show in the female sex. If selection is limited to the 
heterozgous sex: 

2u ,v ,  + u .  + v,  

u . + l = ~  t" (36) U n 
Vn+l i = k  

With complete selection, if all dominants are eliminated, k = - ~ ,  and: 

u. (after the second generation), Un+l -- 2 + u ,  

/)n ~ 0 .  

�9 . u n = 2 n - !  1 + 1 - 1  , but ux=Uo; 

. .  y . = z . = l - 2 1 - " Z o  . (37) 
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SO the number of dominants is halved in each generation after the second. If 
recessives are eliminated, k = 1, and: 

u. + ~ = 1 + 2u, (after the second generation), 

/ )n+ l  ~ O0. 

. .  u .=2" - l (1  + u l ) -  1; 

. .  y . = 0  } 
z. = 2 i -  , (38) nz 0 

the proportion of recessives being halved in each generation. If selection is slow 

Au. = �89 approximately; 

� 9  k n  = 3 log  u . ,  (39) 

if Uo= 1; and y., z. are given by equation (30). Hence selection in the 
heterozygous sex proceeds as in Fig. 1, but at one-third of the pace, whilst 
selection in the homozyg0us sex is slightly faster�9 

14. Certation,  or Gamet ic  Selection of  an Autosomal  Character.  The work of 
Renner (1917) and Heribert-Nilsson (1920) shows that gametes or gameto- 
phytes may be selected according to what factors they carry. The field of such 
selection may be wide, as in wind pollination, but is more often restricted, and 
mainly familial, i.e. among the gametes of the same individual. Except in 
homosporous plants the intensity must be different in gametes of different 
genders, and we shall here only consider the case where one is affected. Let the 
n th generation be formed from gametes carrying u,,A:la, this proportion being 
reduced by selection in one gender to u.A: ( 1 -  k)a, the selection being general 
and not familial. Then the n th generation will be u2AA: ( 2 -  k)u,Aa: ( 1 -  k)aa. 

u.(2u.+ 2 - k )  
(4o) 

"" u"+x = ( 2 - k ) u . + 2 - 2 k "  

With complete selection, if all dominant-carrying gametes are eliminated, 
k = - ~ ,  and: 

U? I 
Un + l -- + U-- ' 

1 
- -  - 1 - 2 1 - " ( 1 - - y l ) .  (41) Y" - 1 + u, 

So the proportion of dominants is halved in each generation. If recessive- 
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carriers are eliminated, no recessive zygotes appear, and the proportion of 
heterozygotes is halved in each generation. If selection is slow: 

Au. = �89 approximately; 

�9 kn = 2 logeu ., (42) 

y n = ( l  + u . )  -2.  

If the gametes are replaced in heterozygous organisms, as must happen in a 
large batch of pollen-grains or spermatozoa from the same source, let the n th 
zygotic generation be formed from unselected gametes (say megagametes) 
UnA: la, and selected gametes (say microgametes) v,,A: la, so its proportions are 
u,v.AA: (u, + v,)Aa: laa. 

2UnV n -}- U n q- V n "] 

"" u"+a-  u . + v , + 2  t '  (43) 
2u.v, + u, + v, + k'(u, + v,) 

V"+a- u , + v . + 2 - k ' ( u . + v , )  

where k '=k / (2 -k ) ,  as in equation (31). With complete selection (when for 
example there is a very great disparity between growth-rates of pollen-tubes, 
though both types are viable), if dominant gametes are eliminated, k '=  - 1 ,  
and the percentages of recessive zygotes in successive generations, starting from 
a standard population, are: 

25, 37.5, 54.69, 71.48, 84.16, 91.83, etc. 

If recessive gametes are eliminated, k '=  1, and the percentages of recessive 
zygotes in successive generations are: 

25, 12.5, 4.56, 1.14, 0.17, 0.014, etc. 

When selection is slow, A = �88 approximately. 

�9 kn=41ogeu,, (44) 

if u o = 1, so selection proceeds at half the rate given by equation (42), y, being 
given by equation (4). 

15. Gametic Selection of  a Sex-Linked Character. This is not known to occur, 
and at all complete gametic selection is very unlikely in animals, so we need 
only consider slow selection. Let selection occur among the gametes of the 
homozygous sex, with no replacement within heterozygous organisms. Let the 
n tla generation be formed from eggs in the ratio unA:la before, or u.A: (1 --k)a 
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after selection, and ~-producing spermatozoa in the ratio v , A : l a .  Then the/1 th 

generation is: 

~- UnVnAA: (Un+Vn-kvn )Aa: (1 - k )aa ;  ~ U n A : ( 1 - k ) a .  

2UnV n + Un + Vn -- kv n ") 
Un + 1 -- Un + V. + 2 -- k v , - -  2k 

bl n 

v"+ l - 1 - k  

(45) 

�9 Au,, = 2ku,  approximately�9 

. .  2 k n = l o g e u , ,  (46) 

whilst y, and z, are given by equation (30), so selection proceeds twice as fast as 
in equation (39). In the more important  case of familial selection (replacement 
in heterozygous individuals), if k '=  k / ( 2 - k ) ,  then: 

2u,v ,  + u, + v, + k'(u,  + v.) ) 

u " + l =  u , + v , + 2 - k ' ( u , + v , )  , 

/ ) n + l  = Un, 

(47) 

Un being here the gametic ratio after selection. 

2 t I t  Au, = ~k u, = �9 . ~k Vn, 

. .  � 89  (48) 

so selection proceeds as in equation (39). 
If selection occurs among the gametes of the heterozygous sex there is clearly 

no effect if they are replaced, whilst otherwise the effects are the same as those of 
zygotic selection, and are given by equation (39). 

16. Comparative Results of Complete (Artificial) Selection. The results of 
complete selection in the more important cases are summarized in Table 4. In 
every case the field of selection considered is the whole population�9 Complete 
familial selection occasionally occurs through natural causes, but never 
through human agency. Column 3 gives the sex to which the numbers in 
columns 4 and 5 refer. Selection is supposed to begin on a population in 
equilibrium containing equal numbers of dominants and recessives of the sex 
considered. It is worth noting that in the case of sex-linked characters, and 
autosomal recessives when selection is gametic, individuals of types which have 
wholly disappeared reappear if selection ceases. With many types of heredity 
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dominants are eliminated in one or two generations, and where this is not the 
case they generally decrease more rapidly than recessives. 

17. Applications to Slow Selection. With the exception of equation (2) the 
equations found for the rate of slow selection are not rigorously accurate, n is in 
general a higher transcendental function of u, but of what nature is not clear. It 
will be shown later that the finite difference equations found in this paper are 
special cases of integral equations which may possibly prove more tractable. 
The values for kn found in terms of u all have inexactitudes of the order k2n. 
Thus if one type has an advantage of 1%, the number of generations required 
for a given change can also be found within about 1%. 

Table 5 shows the effect of slow selection in the various cases considered. The 
third column gives the sex to which the subsequent figures apply. Selection is 
throughout supposed to give the favoured type an advantage of ~ ,  i.e. 1000 
of this type survive for 999 of the other. If the advantage is ~o0, one-tenth of the 
number of generations is required for a given change, and so on, but when 
selection is very rapid the numbers are somewhat inaccurate. 

It will at once be seen that selection is most rapid when amphimixis is 
avoided by any of the means cited above. Moreover selection is ineffective on 
recessive characters when these are rare, except in the case of sex-linked factors, 
when selection is effective in the heterozygous sex, and in gametic selection. It 
seems therefore very doubtful whether natural selection in random-mating 
organisms can cause the spread of autosomal recessive characters unless they 
are extraordinarily valuable to their possessors. Such characters appear far 
more frequently than dominant mutations, but in their early stages are selected 
infinitely more slowly. It is thus intelligible that none of the melanic varieties of 
Lepidoptera which are known to have spread should be recessive. 

There are at least four ways out of this impasse. 

(1) In a species which adopts self-fertilization or very close inbreeding 
advantageous autosomal recessive characters can spread rapidly. Thus 
supposing that in each of two otherwise similar species, one of which is 
mainly self-fertilizing, an advantageous recessive mutation occurs, it will 
spread far more quickly in the self-fertilizing species, and this species will 
tend to replace the other. This fact may well account for the widespread 
presence of self-fertilization and close inbreeding, in spite of the fact that 
they seem often to be physiologically harmful, and must certainly check 
the combination of useful variations which have arisen independently. 

(2) Recessives may be helped to spread by assortative fertilization. This may 
take place in the following ways. 

Psychological isolation. Thus Pearson and Lee (1903) have shown that 
a tall man is more likely to marry a tall woman than a short woman if 
presented with equal numbers of each. Of course the recessives must not 
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be so repulsive to the dominants as to escape mating altogether at first. 
In plants psychological isolation may be due to the psychology of the 
insect or other pollinating organism. Thus a mutant  plant with a new 
colour, scent, or shape may be isolated because it attracts a different 
insect from the type plant. 

Anatomical isolation. Pearl (1907) and Crozier and Snyder (1922) have 
shown that in Paramoecium and Gammarus there is a strong tendency for 
organisms of like size to mate. This will be effective provided mutations 
are not so great as to leave the first mutants unmated. 

Temporal isolation, If the recessive factor causes (or is very closely 
coupled with a factor causing) a change in the breeding or flowering time, 
this will serve as an effective barrier against crossing. 

Spatial isolation. If the recessive has a different habitat, e.g. a different 
range of soil or temperature conditions to which it is adapted, some of its 
individuals will be spatially isolated from the dominants.  

Selective fertilization. If the results of Jones (1920) are due to this 
cause, as seems almost certain, we have here a vera causa, though it must 
be remembered that he did not work with single factor-differences. He 
found that when either of two races of maize is fertilized with a mixture of 
pollen the proportion of hybrids was less than was to be expected from 
random fertilization. This does not seem to have been due to inviability 
of the hybrids, which were more vigorous and fertile than the parent 
races. Clearly if the hybrid zygotes are inviable or sterile the rarer form of 
the species will be weeded out whether it is dominant  or recessive, weak 
or vigorous. But if there is selective fertilization due for example to 
increased activity of pollen-tubes in tissue of the type which produced 
them, the increase of the rare form, especially if it is recessive, will be 
facilitated. 

All these types of isolation, then, will favour the replacement of a type 
species by a recessive mutant. May it not be that in many cases mutual 
infertility is the cause and not the effect of specific differences? A new 
mutant  form arises within a species. If it crosses freely with the type we call 
it a variety, and a moderately advantageous recessive variety will only 
spread very slowly indeed. But if it does not cross freely we call it a new 
species, and it is much more likely to establish itself. Possibly then 
interspecific sterility is partly to be explained by its having a selective 
value. 

(3) The increase of recessives is greatly facilitated, as will be shown later, by 
incomplete dominance. Thus if there is only one recessive in a million, and 
the recessives have an advantage of 0.001, their rate of increase will be 
speeded up elevenfold if the heterozygotes have an advantage of 0.00001 
over the pure dominants. 
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(4) If heterozygotes have any advantage as such this will tend to favour 
any new factors so long as they are rare. But no "stimulus of 
heterozygosis" has yet been demonstrated in cases of single factor- 
differences. 

Whether the isolation of small communities, or what comes to much the same 
thing, great immobility of individuals at all stages =of their lives, will help or 
hinder the spread of a new recessive type in the species as a whole is a nice 
question. It will certainly slow the spread of a dominant.  

At first sight the selection of dominant  factors would not seem to be a probable 
cause of the origin of species rather than new varieties. But it must be 
remembered that dominant mutations are very often lethal in the homozygous 
condition. Under  certain circumstances, to be discussed later, their selection may 
lead to the establishment of a system of balanced lethals, and a probable change 
in the chronosome number. 

The theory so far developed gives a quantitative account of the spread of a new 
advantageous type within a population under certain simple conditions, and 
demonstrates that inbreeding, homogamy, and inter-varietal sterility may 
sometimes be of selective value, and therefore preserved by natural selection. It is 
proposed in later papers to discuss the selection of semi-dominant, multiple, 
linked, and lethal factors, partial inbreeding and homogamy, overlapping 
generations, and other complications. 

LITERATURE 

Barrett. 1901. Lepidoptera of the British Islands, Vol. 7, p. 130. 
Bate. 1895. Ent. Rev., 27. 
Bateson. MendeFs Principles of Heredity, p. 221. 
Crozier and Snyder. 1922. Proc. Soc. Exp. Biol. Med. 19, 327. 
Detlefsen. 1915. Genetics 3, 573. 
Durham. 19il. J. Genetics 1, 107. 
Goldschmidt. 1920. Z. indukt. Abstamm.-u. Verblehre 23, 1. 
Hardy. 1908. Science 28, 49. 
Heribert-Nilsson. 1920. Hereditas 1, 41. 
Ibsen and Steigleder. 1917. Am. Nat. 51,740. 
Jennings. 1915. Genetics 1, 53. 
Jones. 1920. Biol. Bull. 311, 251. 
Morgan and Bridges. 1916. Carn. Inst. Wash. Pub., 237. 
Pearl. 1907. Biometrika 5, 213. 
Pearl. 1912. Am Nat. 46, 130. 
Pearson. 1904. Phil. Trans. R. Soc. A203, 53. 
Pearson. 1908. Proc. R. Soc. 54, 72. 
Pearson and Lee. 1903. Biometrika 2, 371. 
Punnett. Mimicry in Butterflies, 154. 
Punnett. 1917. J. Hered. 8, 464. 
Renner. 1917. Z. indukt. Abstatam.-u. Verblehre 18, 121. 
Schimidt. 1920. C. r. Tray. Lab. Carlsberg, 14. 
Warren. 19t7. Genetics 2, 305. 
Wood. 1905. J. Agric. Science 1,364. 



A MATHERJATICAL THEORY OF NATURAL AND 
ARTIFICIAL SELECTION. PART I1 

THE IKFLUEIKCE OF PARTIAL SELF-FERTILIS-TIOS, ISBREEDISG, 
ASSORTATIVE MATING, A S D  SELECTIVE FERTILISXTION ON THE 
COMPOSITION OF MESDELIXS POPULATIONS, AND ON NATURAL 

SELECTION. 

BY J. B. S. HALDANE, M.A. 
Trinity College, Cambridge. 

(Receiced I August 1924.) 

IN the first paper(1) of this series espressions mere found for the effect of natural 
selection of small and constant intensity on Mendelian populations whose genera- 
tions do not overlap; either during random mating, or when all zygotes are self- 
fertilised. An intermediate condition as regards mating may arise when there is 
a tendency to self-fertilisation, to mating between relatives, or to unions between 
similar but not necessarily related zygotes or gametes. We consider a population 
whose mth generation consists of p ,  AA : 2qm Aa : rmaa, where A is a completely 
dominant RIendelian factor, and pm + 2qm + r ,  = I .  When such a population 
is subjected to any system of mating it falls rapidly or instantly into a new equili- 

' brium. During this process it will be shown that the gametic ratio 11,  = 'a 
is unaltered. When equilibrium is reached under the given mating system we find 
p ,  q, r in terms of u. 

We now suppose selection to take place at such a rate that (I  - K) recessives 
survive for every dominant, and so slowly that the population is always very nearly 
in equilibrium under the mating system. If this condition were not fulfilled we 
should have to investigate the problem by the method of Lotkar?), which in this 
case presents considerable difficulties. During selection we have 

Qm + r m  

Since k is small, and ra ( I  + 21,) = and is therefore less than unity, 
Q,i rn 

dl1 

dn ... - = h i n  = kr,,u, (I  i t i ! , )  approsimately. 

.I 

putting u, = I ,  as in Part I. This can be evaluated as r is a known function of u. 

Under random mating when recessives are few r,& = -- 
selection is very slow. It will be shown that with some systems of mating successive 
small values of r,  approximate to a geometrical series, so that selection is vastly 
more rapid, 

I approsimately, so 
(I  + kn)' 
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PARTIAL SELF-FERTILISATION. 
Let a proportion 1 of the population be self-fertilised, ( I  - I )  mated at random, 

where 1 may have any value from o to I inclusive. 
*.* Pm+l = 1 ( p w i  -i- tqni) + (1 - 0 @nL + qni)', 

qni+ l=  
mi+, = 1 ( h w  + rnJ -+ (1 - I )  (qm + mi)'. 

+ ( I  - I )  (Pm + qm) (qm + rm), 

Clearly u,i+l = u , ~ ~ ,  and 

1 9n1 = (2 ----- - I )  ( I  + u)? - + (fT [ q o  - (2  - r )  ( I  $. .)' - 2 ( 1  - 1)u Z ( I - Z ) U  

So there is a rapid approach to equilibrium, when 
u (1 4- 2u - ZU) 

Z ( I  - I ) u  

2 - 1 I l u  

* = (2 - 1) ( I  t I f ) ?  

9 =  (2 - 2)  ( I  +- up 
= ( 2 ( I ) + 2 / j 2  

During selection 
(2 - Z) ( I  + u)  du 

= li' I 1  (2 - 1 +- lU) 

2 - 1 + lu, 
(2 - z) (I  +- u,)' 

r, = i 

...( 2.1). 

...( 2Q), 

unless I = 0, when kn = u, + log, u, - I .  

When recessives are sufficiently few 
1 kn 

(2 - I> rn = - = le 2 + 1 approximately, 
1 -__ 

un 

approximately, and selection is rapid. 
rn Ik 

T f l + l  1 2 + 1  
S O - = I A -  

PXRTIXL IKBREEDISG. 
Let a proportion I of the population be mated to whole brothers or sisters, 

( I  - I )  mated at random. Let matings occur in the following proportions: 

RIating Proportion Producing offspring AIatings of inbred offspring 
AA x A.4 (tn an AA 1 la, (A.4 x AA) 
AA x Aa 4fm &,, (AA + Aa) 13, (.4A x -44 + 2AA x Aa + Aa x Aa) 
AA x aa ZYn 27 wn Aa ' 2Zinz ( a a  x Aa) 
Aa x Aa 168,,) 

Aa x aa ' 
aa A aa trn aa I,',,, (an x aa) 

46,(Arl I 2-42 -r U U )  18,,,(A4A4 x AA + @A x AU + 2AA x uu + 

l c ,  (Aa x Aa + 2.4~ x nu + an x a) 
+4a x Aa + 40 x ua + oa x au) I 

26, (Aa + nu) , 



But Pr = (1%' - 9 )  (& - 9) .  

- 9 ) .  

I I +  (4 - 30 u 
= (+ - 31) ( I  + f l y  

= (+ - 31) ( I  + 11)') 

(4 - 34 ( I  + u)') 

-.- 
4 (I.- 1) ZL 

4 - 31 + 111 
I =  

(4 - 31) (I + U) dll 

= log, 11, + 4 ___- (1 - 1) log, 

kn = In 7- 31 +- lu) 
-.31+ "n) 

1 4 - 21 
' 4 -  31+lun r n  = 
(4 - 34 ( I  + Iln)' 

unless 1 = 0 ,  when kn = un + log, 21, - I. 

When recessives are very few, 

...(3'I ), 

...(3.2 ), 

1 kn 
(4 - 31) r n  = - = le 31 - 4  approximately, 

- ___ 1 
21 n 

approximately, and selection is rapid. so - = I + - I ,  lk 
fn+l 4 - 31 

PARTIAL ASSORTATIVE MATING. 
We consider a population containing a proportion r of recessives, the sexes 

being in equal numbers and mating so conducted that while each zygote is mated 
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once and only once in a given period, the probability of a recessive mating with a 
given recessive is greater than that of its mating with a given dominant, and similarly 
for dominants. Let 8 be the proportion of dominant x recessive and recessive 
x dominant matings, then that of matings between two dominants is I - r -L 8, 
between lsvo recessives r - 8, 

where A is positive. In  general A is a function of r ,  but since - is the coefficent 

of association as defined by Pule (31, between the phenotypic characters of spouses, 
and such coefficients are found to be valuable even when the proportions of the 
different classes vary greatly, it is probable that A varies rather little with changes in 
the population. In a case of human assortative mating given by Yule A = 018. 

... (r - 8) (I  - r - 8)'= (I  i A) 8*, 

I + z h  

:. Um+1= u,; and, at equilibrium, 

A ( I + U ) 4 q 4 + U 2 ( 1  + u ) Q - u ' = o  
I 

9 r =  -- 
I + U  

During selection 

+z = kr,u, (I + u,), dn 

...( 4'1). 

...(p), 

Hence selection proceeds at a rate intermediate between those of equations (1.2) 
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and (2.3) of Part I. When recessives are few, so that 21,: is large compared with A ,  

!(A, 21) = ~ approximately, and selection proceeds according to equation (2.3) 
I f U ’  

of Part 1. Hence the effect of partial assortative mating in speeding up selection 
is unimportant. 

24 

SELECTIVE FERT I LI SAT ION. 
If A has the same meaning as above, except that it applies to unions between 

gametes and not zygotes, as in J o n e s ’ ~  case, where A was generally less that 100, 
though in one experiment it exceeded 10,000, equilibrium is reached in one 
generation, and pr  = ( I  + A) q2, 

-____ 
2A + ( I  + 2 4  21 - d ( I  -+ u)? + e\ l l  

2 h ( I  + u)  
d ( 1  + u ) 2  + $24 - I - 11 

I + 2A + u - d(1 + Id)? + qxu 
2 A ( I  f u)  

. . . (S.I) .  1 :. p = 

-- 
q =  2h ( I  + ff) 
r =  ____ - -  

During selection, 
2Adu 

~ ~ = r u [ I + z A + f f - ~ ( I  + # ) 2 + e \ U ]  

kt2 = loge un + 2+i [ I I ,  - I A d ( I  + ~ 1 , ) ~  + +IU, - 2 4 3  
+ ( I  2h) log, ( I  -!- 2A + u, 
~ ~ ( I + f ~ , ~ ) ~ ~ ~ ~ z l n ) - l o g ~ ( I  + 2 1 ,  

f 2 h I n  e d(1 + 21,)Z + $un) 
- ‘2A log, 2 ( I  f A -!- -A)] 

I + 2A+ U + d ( I  + #)2+ e\#& - 
= .r, 2 ( I  + A) I1 

. * . ( 5 4 ,  

I _ -  I + A  
unz ( I  4- A)k’n? (1.2) and (2.3) of Part I, and when recessives are few T ,  = - - 

approximately, so selection is only very slightly more rapid than during random 
mating. 

DISCUSSION. 

Effects similar to those produced by partial brother-sister mating may be 
expected from less drastic types of inbreeding, e.g. mating of cousins. Such moderate 
degrees of inbreeding must occur in any population where neither zygotes nor 
gametes of both genders are very mobile. When recessives are sufficiently rare 
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any cause which promotes inbreeding, even of distant relatives, will enormously 
increase their number for a given gametic ratio, and will make u, tend to vary as 
r,,-I rather than rn-f, making ZI an exponential function of Kn instead of being 
proportional to it. Assortative mating will have little effect. Thus, if recessives 
number one in a million, and if only one mating in a hundred is behveen whole 
brothers and sisters, more than one recessive in 400 will mate with another recessive. 
T o  attain a like result by assortative mating a recessive must be more than 2 j00 times 
as likely to mate with a recessive as a dominant. This would imply such obstacles 
to mating with a dominant that the first recessive to appear could never mate at all. 
Probabilities of this order may, however, occur in selective fertilisation. Hence 
inbreeding or self-fertilisation appears to be necessary in the early stages of selection 
of a recessive character if this process is to be fast enough to be an effective cause of 
evolution. They cannot be replaced by moderate degrees of selective mating or 
fertilisation. 

SUMMARY. 

Expressions (2*1), (3*1), (+I), (5-1) are found for the composition of Mendelian 
populations subjected to partial self-fertilisation, inbreeding, assortative mating, 
or selective fertilisation, and equations (2-2), (3*2), (4.2), (5.2) derived for the effect 
of selection on such populations. The  effect of selection is greatly increased by 
inbreeding and self-fertilisation. 
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A mathematical theory of natural and artificial selection. Part
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In this part the cases of a single but incompletely dominant
factor, and of several interacting factors are considered. Mating is
supposed to be at random, populations to be very large, and
generations not to overlap. The notation is, so far as possible, that
of Part I (1):

Selection of an incompletely dominant autosomal character.

Let the nth generation be formed from female gametes in the
ratio unA : la, male gametes in the ratio vnA : la. The nth genera-
tion is therefore in the proportions unvnAA : (un + vn)Aa : laa.
Let the ratios after selection has occurred be:

</ unvnAA : (1 - Km)('«n + vn)Aa:(l- km)aa,
$ unvnAA : (1 - Kf) (un + vn) Aa : (1 - kf) aa,

where Km, Kf, km, kf are small.

. . 2«n«n + (1 - Kf) (Un + Vn)
•• Un+1 (l-Kf)(un + vn) + 2-2k/

Hence, since — is clearly small,
un

t a p p r o x i m a t e l y >
Z X + Un

i A un — vn un (Kmun — Km + km) . , .
and Avn=

 w " + v —, approximately.
L 1 + Un

Aun and Avn can be shewn to differ by a small quantity of the
second order.

" ( g » g + fe) (1-0)

where K = \ (Kf + Km); k = \ (4, + km).

Equilibrium can only occur when AM,, = 0, i.e. un tends either

to zero, infinity, or to 1 — -=. Hence for equilibrium to be possible

k
-T? < 1. If K be positive, i.e. heterozygotes are at a disadvantage
XL

compared with pure dominants, then Awn 5 0 according as

"n < 1 — jr- Hence the equilibrium is unstable if it exists. If K
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be negative the equilibrium is stable if it exists. We have thus
three cases to consider. In each

d,Un Un(KUn-K + k) . , .
~p:=:-2-±—^-2 > approximately,

and the proportion of recessives yn = (1 + tt,,)"2.
k

(a) No equilibrium, -—. > 1.

.. „ , k-2K, /Kun-K + k\ . . . .
.•. (k - K) n = log, un + K log, (^—2_ J...(1-1)

making the usual convention that u0 = 1.
Hence the values of un lie between two geometrical series, and

selection is therefore vastly more efficacious on recessives than
when dominance is complete, as in equations 2*4 and 4"3 of Part I.

(6) Stable equilibrium, k > K, 0 > K.
- k, fKun-K+k

k k
We must take u0 g 1 — -^ according as un 5 1 — -jy.
Here again successive values of un lie between two geometrical

series, so that the population proceeds fairly rapidly towards
equilibrium. As Fisher (2) has pointed out, such cases probably
occur in nature in connexion with factors governing size, where
the heterozygote is at an advantage as compared with either type
of homozygote.

(c) Unstable equilibrium, K > 0, K > k.
The population proceeds towards homozygosis in one direction

or the other. This case can hardly occur in nature, as any mutants,
either in an A A or an aa population, would be weeded out while
still few in number.

Selection of an incompletely dominant sex-linked character.

The female sex is throughout supposed to be homogametic ; if
the male is homogametic the argument is the same, mutatis
mutandis. Let the nth generation be formed from ova in the ratio
unA : la, female-producing spermatozoa in the ratio vnA : la.
Let the ratios of the nth generation after selection be:

? unvnAA : (l-K)(un + vn)Aa : (l-k)aa,
f unA:Q.-k')a,

where K, k and k' are small.
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1-k"

approximately, (2*0)
and un = vn, approximately.

2K —2k - k'
Hence un tends to zero, infinity, or —jr-p—^— . Equilibrium

k + k' 1
is possible if 5-==—j7 < =. It is stable if 2K + k' be negative,

unstable if this quantity be positive. In each case
dun un(2Kun + k'un-2K+2k + k>) .
-^ - — 3 7 1 ^ 0 " • approximately'

and the proportion of recessive females is (1 + tin)"3, of recessive
males (1 + un)~K Three cases occur.

(a) No equilibrium, 2R + ^ > % •

2k+k'-2K . 2k-4,K, /2Kun+k'un-2K+2k+k'\
re=l0^u+l0g(j•• 3 re=l0(

(2-1),
putting w0 = !• Selection therefore proceeds much as according to
equation 72 of Part I.

(b) Stable equilibrium, 0 > 2K+ k', 2k + k' > 2K.
2K-2k-k' /ti»\ 2k-4>K} (2Eun+k'un-2K+ 2k+k'\

niOS{) + l O g )• • 3 n ^ 0 0

(2-2)
where u0 5 ux according as un 5 vm.

The results of Robertson (3) suggest that milk-yield in cattle
depends on one or more sex-linked factors which act most effectively
when heterozygous, besides autosomal factors. If so human effort
in this case has given K a negative value, while k and k' are
nearly zero. Hence an equilibrium should be reached.

(c) Unstable equilibrium, 2K + k' > 0, 2K > 2k + k1.
The population proceeds in one direction or the other to homo-

zygosis. This case can hardly occur in nature.

Multiple factors.
Many cases exist in nature where several factors are needed to
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ensure the appearance of a character. Thus in wheat Nilsson-
Ehle (4) found that any one of three dominant factors will produce
redness, that is to say a white plant must be a triple recessive.
On the other hand Saunders (5) found that in Matthiola three
dominant factors are needed for slight hoariness, four for complete
hoariness, so that a hoary plant is a multiple dominant. In other
cases the effects of factors are merely additive, and selection will
act on each independently of the others. It will be shown later
that linkage between factors, unless very strong, is unimportant.
We shall therefore at first consider unlinked factors, and shall
confine ourselves to the case of complete dominance.

Selection of a multiple autosoinal recessive character.
Let Alt A2,...Ar,...Am be TO autosomal dominant factors,each

of which produces the same effect, so that the multiple recessive
alone competes with the other genotypes. Let 1 — k of this type
survive for every one of the others. Let yn be the proportion of
multiple recessives in the nth generation, formed from gametes in
the proportion rvnAr : lar, and similarly for the other factor pairs.
Then the Kth generation consists of zygotes in the ratios:

run"ArAr : 2runArar : larar, etc.
m

.: y . = 11(1+ ,«*)-.
r-l

Of the arar zygotes only yn (1 + rwn)
2 are multiple recessives.

Hence
_ rMn (1 + rUn)

r n + 1 l + M - A r y ( l + i i y

n = kyn r
un(1 + r«n)» approximately, if k be small.

Putting x = knwe have approximately:

dx

r«n)

To eliminate the w's from these TO equations put sr = , r " .
^ r l+run

' ~^ r = J yndx +logar.
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.'. sr = ars, where ar is an integration constant independent
of n and given by the initial state of the population.

.-. Vn = n (i -
"=1 . . 1- (3-0).

7 f ds '
kn= x = I -—

J syn
The latter equation is integrable, and the elimination of s

gives the required relation between yn and kn.

whereas if only one factor is concerned,

Now comparing these rates for equal values o£ yn in the two
m m

cases, we note that since y n ~ * = l + M n = I I ( l +rMn) .". un>S,.M».
r=l r=l

Hence selection is slower than in the case of a character deter-
mined by one factor only. When however dominants are very
rare, or when one ar greatly exceeds the rest, i.e. one recessive
factor is far commoner than the others, selection proceeds at about
the same rate in the two cases. It is slowest when all the a/s are
equal.

Selection of a multiple sex-linked recessive character.

If Alt Ait... Ar,... Am are sex-linked (the female being homo-
gametic) the nth generation formed from eggs in the ratios
runA : la, etc., and female-producing spermatozoa in the ratios
rvnA : la, etc., while zn is the proportion of multiple recessive
males, yn of such females, and k is the coefficient of selection.

_
•• r n + I

v -
rVn+1 i

y ) ( rn)
r=l

zn=U(l+run)-
1.

j — 1

Approximately run = rvn, yn = zn\

.: 3 A run = k rUn (1 + rw«X(2V + zn).
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As above, putting kn = x, r " = ars, we have a, constant, and

1
zn = II (1 - ars)

r = 1 . . V (4-0).

fa — s j ^ * J
This again is soluble in finite terms by the elimination of a.

while in the single factor case

- j -^ = — &n (2^n + 1) «n, where un = zn~
x - 1.

Comparing these rates for equal values of zn, we find
as above un> 2rwn- Hence selection proceeds more slowly with
many factors tljan with one. When, however, dominants are very
rare or one ar much larger than the rest, selection proceeds as
with one factor.

Selection of a multiple autosomal dominant character.
When each of m autosomal dominant factors is needed to

produce a character, we find, using the same notation as above
except that yn is the proportion of dominants,

m

yn=II[l-(l+rMn)-*],
r=\

lrUn_yn(\ + rUn) -,
p = wifch m_ 1 sim]ar ti
dx 2 + run

 H

(
Hence the problem can be reduced to the elimination of s

between:

r = 1 ' (5-0)
kn = x = ^

J 8y
where <f> is defined by the equation t = ^ (t) e*(<>.

Numerical integration would be possible for known values of 0,,

dx ynr
while in the single factor case

<fyn _,
dx =

Now when one ar is very much smaller than the rest these two
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rates are nearly equal for equal values of yn. When all the ar's
are equal,

The ratio of this rate to the rate with a single factor (putting
tm = y») is

(1 + Vl -t)(l-tm)!*
When t is small this tends to the small mtm~l\ when t is nearly

unity, to rn" ' which is also small. The ratio when all the a,'s are
equal is, by Purkiss1 theorem, the minimum value. Hence it would
seem that in general natural selection acts more slowly on a
multiple dominant than a single dominant. The case of a multiple
sex-linked dominant and various more complicated cases present
still greater difficulties to analysis, though of course individual
cases could always be solved numerically.

Linkage.
Consider two autosomal factors A, B, linked with such intensity

that the cross-over value is 1001 in the female, 1001' in the male
sex. Let the nth generation be formed from:—

eggs pnAB : qnAb : rnaB : snab,
spermatozoa pn'AB : qn'Ab : rn'aB : sn'ab,

where pn + qn + rn + sn = pn' + qn' + rn' + sn' = 1.
The nth generation therefore consists of:—

pnpn'ABAB : (pnqn'+pn'qn)ABAb : (pnrn
r +pn'rn)ABaB

: qnqn'AbAb : (pnsn'+ pn'sn) AB.ab : (qnrn'+ qn'rn) Ab. aB
: rnrn'aB. aB : (qnsn' + qn'sn)Abab : (rnsn' + rn'sn) aBab
: snsn'abab.

If no selection occurs they produce gametes in the proportions:
2j»»+i = pn + Pn + I \qnrn' + qn'rn -pnsn' - pn'sn)
2qn+1 = qn + qn'-l (qnrn + qn'rn -pnsn' - pn' sn)
2rn+1 = rn + rn'-l(qnrn' + qn'rn-pnsn' -pn'sn)
2sn+, = sn + sn' +1 (qnrn' + qn'rn - pnsn' - pn'sn),

whilst the values of /?„+/, etc., are given by the same expressions
with I' substituted for I. Hence after one generation

PlL+Jl a n d K±I«;
+ +V

have the., same constant value u, while
pn + rn _ pn' + rn' _

VOL. XX11I. PART IV. 25
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We may therefore write:
uv

P

+ Xn.

Pn -

rn'-
 v

 Xn'; Sn' =

+ *»')•
. •. 2xn+1 = (1 - 21) (xn + xn'); 2xn+1' = (1 - 2V) {xn + xn').

Hence if x0 + x0' = c,

(6-0).

Hence the proportions of the various types of gamete approach
asymptotically those which would be reached in one generation
without linkage, the ratio of successive differences from the final
values being l — l—l'. Hence if either I or I' is larger than k the
effects of linkage are unimportant. A similar proof holds for a
pair of sex-linked factors.

Selection in a tetraploid organism.
In a tetraploid race which is stable, i.e. yields only diploid

gametes, five types of zygote and three of gamete exist. Gregory (6)
and Blakeslee, Belling and Farnham (7) have shown that zygotes
produce gametes as follows:

Zygotes . Gametes
AAAA AA
AAAa IAA : 14a
AAaa IAA : 44a : laa
Aaaa lAa : laa
aaaa aa

Gregory thought that AAaa gave IAA : 2Aa : laa, but his
results, as well as theory, suggest the above ratio. As in Part n
we first consider tetraploidy without selection, and then the process
of selection in a population which would be in equilibrium but for
that selection. Let the mth generation be formed from gametes in
the ratios pmAA : 2qmAa : rmaa, where pm + 2qm + rm = 1, and

Um-PJ?-+J.™. They form zygotes in the ratios :
a + r

pm
2AAAA : 4pmqmAAAa : (4>qn*

: 4iqmrmAaaa : rm*aaaa.
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. •. pm+1 = pm +1 (gm
2 - pmrm)

qtn+i = 2m ~ § (?m2 ~ Pmrm)
rm+i = rm + § (gm

a - p m r m ) .
Hence Um+x = wm = it, and when equilibrium is reached

o a = v r .
2oo x^oo oo

n - M" M l
nence P . - (

and the population in equilibrium is in the ratios :

AAAA :-rr-.—r.AAAa:
(!+«)• •(!+«)* (l + u

4M . 1
; Aaaa : -^ r-. aaaa.

Putting dm = qm*-Pmrm, we find

m-1

r=0

Hence the ratios of the different classes converge very rapidly
to their final values. Under selection of a population which has
reached such an equilibrium, if A is completely dominant,

_
n+1~

-j-2 = Aun = j - — ^ - - , approximately, if k be small.
an {] + w)
.-. ifM0=l, Am, = l0

Hence when dominants are few un changes at the same rate as
in a diploid organism; when they are many, much more slowly.
To compare the change in the number yn of recessives we find

while in a diploid population

Hence here too the rate is always slower in the tetraploids,
though not much so when recessives are few.

25—2
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If dominance is incomplete, as is usual in tetraploid organisms,
and after selection the zygotes are in the ratios :

un*AAAA : 4(1 -kJvjAAAa : 6(1 -k^uJAAaa
: 4(1 — k3)unAaaa : (1 —kt)aaaa,

- k,) un
3 + 3 (k3 - k2) un

2 + (kt - k3) un

approximately, if the coefficients are small. The possible equilibria,
if any, are given by the roots of

huj + 3 (k, - *,) uj + 3 (k3 - k2) ux+kt-k3 = 0.
The various possible cases, and their stability, could easily be

investigated. If the advantage of the various genotypes increases
or decreases with the number of dominant factors they contain, so
that ki>k3>k2>k1>0, or 0 >kl>k2>k3>ki, no equilibrium is
possible,

n=[ (i + unydun .

If &, = 0 this contains a term proportional to un or un
2. If

A, =£ 0 all the terms are logarithmic and selection is always rapid.
But AAAa is more likely to resemble AAAA than Aa to
resemble A A. Hence polyploidy diminishes the probability of a
rapid selection in populations where recessives are few. Since
stable polyploidy is only known in hermaphrodite plants there is
no need to discuss cases of sex-linkage or different intensities of'
selection in the two sexes. The theory can readily be extended to
the higher forms of polyploidy.

SUMMARY.

Expressions are found for the changes caused by slow selection
in populations whose characters are determined by incompletely
dominant, multiple, or polyploid factors, and for the equilibria
attained in certain of these cases.
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A mathematical theory of Natural and Artificial Selection.
Part IV. By Mr J. B. S. HALDANE, Trinity College.

[Received 11 November, read 22 November 1926.]

In such organisms as annual plants, in which successive gene-
rations do not .overlap, the composition of the ra+lth generation
can be calculated from that of the ?ith, and the resulting finite
difference equation investigated. Where generations overlap we
may obtain a similar relation between the compositions of the
population at times t and t', but the finite difference equation is
now represented by an integral equation. This fact was first
pointed out in 1910 by Mr H. T. J. Norton of Trinity College.
At a much later date I arrived at the same conclusion, and
Mr Norton showed me his results in 1922, stating that he would
publish them shortly. He has been prevented from doing so by
illness, and, although I believe that all the results here given were
reached by me independently, there can be no question that
Mr Norton had obtained many of them previously, and had treated
the problem rigorously, which I have not done.

The only case considered here is the very simple one in which the
intensity of selection is independent of the size of the population.
A preliminary lemma will first be discussed.

The growth of a 'population.

If the death-rate and birth-rate of a population are not func-
tions of its density, its number at any time may be calculated as
follows:

Let N (t) be the number at time t. Onl}. the female sex need
be considered if the sexes are separate.

S(x) be the probability of an individual surviving to the
age x.

U(t)Bt be the number of individuals produced between
times t and t + St.

K(x)8xbe the probability of an individual between the
ages x and x + Sx producing one (female) offspring. All
individuals of this age, both alive and dead, are con-
sidered, so that if P{x) be the corresponding function
for living individuals only, K(x)= S (x)P(x). Then

N(t)= Cu{t-x)S(x)dx)
J l I (1-0).

U(t)=j°U(t-x)K(x)dx)
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Instead of infinity any upper limit exceeding the maximum
life of the organism may be taken. Equation (TO) has been con-
sidered by Herglotz*. Let U(t) = c&%. Then

K(x)dx=l, or fV»^(*) = l (l'l),
Jo

e - " ( ) f
o Jo

where a is sufficiently large. Since K(x) is always real and zero
or positive, the above integral is a monotone function of z when z
is real, and can have any real positive value. Hence it has one
and only one real root for z, say ct0. The complex roots clearly
occur in pairs a,. + t/3r. Then

f e-°'*K{x)dx>\ e-{*'+*'>*K(x)dx
Jo Jo

= 1.
Therefore ar<au.

If any two functions of t are solutions of (l'O) so is their sum.
Therefore

U (t) = aoe^ + £ are"« cos ft. (t - br))

N (t) = Co?"1 + £ cre* cos ft. (t - dr)

In general there will be an infinite number of terms. The
values of ar and br, and hence of cr and dr, depend on the initial
conditions. Where multiple roots occur there will be periodic
terms including powers of t as factors. Since or<tt0i all the
periodic terms become negligible compared with the first after the
lapse of a sufficient time. That is to say, oscillations of the popu-
lation about an exponential function of the time are either damped
or at least increase less rapidly than the population itself. In

particular, if I K (x)dx = 1, so that the population is in equilibrium,
J o

oscillations are damped and the equilibrium is stable. We are
therefore justified in neglecting periodic terms in the solution of
equations which only differ by small terms from (10), and which
occur in the subsequent analysis. It is proposed to discuss the
stability of the equilibrium when S(x) and K{x) depend on the
number of the population in a subsequent paper.

Incidentally, if G (x) Sx be the probability of any member of
the population being between the ages x and x + Sx, then

* Herglotz, Math. Ann. 65, p. 87.
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Hence, when oscillations have died down,

C(x)=jJ~
J o

This constitutes a new proof of Lotka's* theorem on the
stability of the normal .age distribution.

Selection of an autosomal factor.
Consider a population consisting, at time t, of D(t) female

zygotes possessing a dominant factor A, R(t) female recessives.
The sex-ratio at birth is taken as fixed.

Let F(t)St be the number of fertile A ova produced between
times t and t + St.

f(t) St be the number of fertile a ova produced between
times t and t + St.

M(t) St be the number of A spermatozoa produced between
times t and t + St.

m (t) St be the number of a spermatozoa produced between
times t and t + St.

S(x) be the probability of a female dominant reaching
the age x.

s (x) be the probability of a female recessive reaching the
age x.

K{x)Sx be the probability of a female dominant (alive or
dead, as above) producing a female offspring between the
ages x and x + Sx.

[K (x) — k (x)] Sx be the same probability for a female
recessive.

L (x) Sx be the same probability for a male dominant.
[L (x) — I (#)] Sx be the same probability for a male reces-

sive.

S = I S (x) dx, s = / $ (x) dx.
Jo Jo

K=\ K{x)dx, K'= I xK(x)dx, k=\ k(x)dx.
Jo Jo - II

L = { L (x) dx, L ' = ( xL (x) dx, 1 = 1 I (x) dx.
J o J (i Jo

In general the functions S(x), s(x), K(x), etc., will not be
functions of age alone, but of D(t),R(t), etc. We make the
assumption however that selection and population growth are
proceeding so slowly thnt k(x) and l(x), and K —\ are small, and
S(x), etc., do not vary appreciably in the course of a generation.

* Lotka, Proc. Nat. Ac. Sci. 8, p. 339, 1922.
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If mating be at random, the rates of production of the three
female phenotypes at time t are
A A FMMQ) • An F(t)m(t)^rf(t)M{t) f(t)m(t)

' i f (*) + «(«)' ' M(t) + m(t) ' 'M(t) + m(ty
The group aged x at time t was hatched or born at time t — x.

Therefore

"jo
f(t-x)m{t-x) k(x)dx

/2F(t-a),1/(t-3;)+J(t-a ;)m(t-a;) + /(t-a;)Jf(t-a;)
-Jo M(t-i) + m(t-x) l '

; [F{t-x)m(t-x) + f(t-x)M{t-x) + 2f(t-x)m(t-x)
In M (t-x)+m(t-x) l '

Jo M(t-x) + m(t-x) '
Since selection and population growth are slow, we may put
F(t-x) = F(t)-xF'(t), etc., M(t)=\F(t), m(t)=\f(t), all to
the first order of small quantities. Hence, to this degree of
approximation,

j K'[F(t) +/(t)} M'{t)m(t)-M(t)m'{t)

Similarly

all approximately. Therefore

- 2L'F («)

+ W ( 1 | +u/ , ( )™
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approximately,
_F(t) 2U\F(t)f'(t)-F'(t)f(t)} lFjt)[f{tW
~f(t)+ L[F(t)+f(t)} + L[F{t,+f(t)-p'

approximately, by solving the quadratic. Therefore
IK 11PW TT'F'm , L'[F(t)f(t.)-F'{t)f(t)] , lF(t)\f(t)f nlK-l)F{t)-KF[t) + L [ m + m "

IK iwm K<fl,\ L'[F(t)f'(t)-F'(t)f(t)1 lF(t)[f(t)f fc[/(t)p

If u(t) = F(t)lf(t),
d (l + kL)u(t)

This is equivalent to equation (2*1) of Part I*, , , V,T being

the coefficient of selection. In general this quantity is not inde-
pendent of t, hence the equation cannot be integrated, but if its
upper and lower limits are known, the march of the composition of
the population can be roughly calculated from equation (2*3) of
Part I. If, however, the population is very nearly in equilibrium,
and either dominants or recessives are very rare, more accurate
results are possible.

When recessives are rare, F(x) is large and equal to a constant
F, D(%) being also large and equal to a constant N,K=\, and
F'(t) is negligible, while f(t) is small. Therefore

, - _ (L' + K'L)F
and M-
where t0 is an integration constant. But

JV = D (t) = f " F (t - x) S (x) dx = FS,
J o_ r

Jo - *)
' + K'LYsN

Hence selection proceeds at the same rate as when generations
are separate, with a selection coefficient equal to

+ kL l

• Haldane, Trans. Camb. Phil. Soe. 23, p. 19, 1924.
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When dominants are rare, f(w) is large and equal to a constant
/ , K = 1 + k, and F(x) is small. Therefore

(l+kL)(c-t)

= e'L>+K'L ,

where c is a constant of integration. Therefore

.D(t)=[*>2F(t-x) S (x) dx = 2SF (t)
J o0

<l + kL)(to-t)
V + K'L= e V + K'L (24),

where t0 is an arbitrary constant. Selection therefore proceeds as
when generations are separate, but with a selection coefficient

1 + kL
L + K'L'

When the death rates and fertility rates are the same in the
two sexes, or in a hermaphrodite species, we have in general,

d ku(t)

dtuit)=ifw^vtn (25)>

when recessives are rare,

when dominants are rare,

D{t) = e K> (2-7).

Now k has approximately the same meaning as when genera-
tions are separate, provided K = 1. Hence the two cases become
comparable if we choose our unit of time, or " generation," so as to

make K' or I xK(x)dx = 1, as in the calculations of Dublin and
J o

Lotka* on the rate of increase of a population. In each case, if
functions analogous to S(a;), s(x) are known for the males, their
numbers can be calculated.

* Dublin and Lotka, Journ. Amer. Stat. Assoc. 1925, p. 306.
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Selection of a sex-linked factor.

Here, using the same notation as above, we find

tw l i n n K'F"tA i L'[F(t).f'(t)-i-F'(t)f(,)) + lF{t)f(t) ,
(K-l)F{t)-KF(t) + ° 1

(K-l)f(t)-KS (t)

In general, if u = F (t)/f(t),

(L'+2K'L)±u(t)

an equation analogous to (2'0) of Part III*.
When recessives are rare,

(3-2),

(2/ + 2K'L)f (t) + lf(t) + ! _ _ ^ _ l = o,

where F is the birth-rate of dominants. Three cases occur:

(a) If kL is negligible compared with IN, which will be the
case if selection is of the same order of intensity in the two sexes,
or more intense among males, then

(3-31).

The number of recessive males is proportional to / ( i ) , of recessive
females to its square.

(b) If kL is of the same order of magnitude as IF, then

2kLf(t) + lF

Hence if V, v are quantities corresponding to #, s for the male
sex, the proportion of recessive males is

Iv

of recessive females

( i~ — t V

* Haldane, Proc. Camb. Phil. Soc. 23, p. 363, 192(1.
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(c) If kL is much larger than IF, i.e. selection is confined to
females, then

(2K'L+L')F
( 3 3 3 ) -

Hence the proportion of recessive males is

(L' + 2K'L)v
2kLV{t~Q'

of recessive females

When dominants are rare,
(l+ikL)(t-t0)

The number of male dominants is proportional to F (t), that of
females being double that of males.

When the intensity of selection is equal in both sexes, these
equations simplify to

u(t) u(t)]
dtU{t)~ W[l + u(t)] ( 3 5 ) '

)
F(t) = e K< (3-7),

analogous to equation (7*2) of Part I.

DISCUSSION.

The most satisfactory table of K (x) known to me is that given
by Dublin and Lotka* for certain American women. Here the

K'
population is growing, and K =1*17, while ^ , the length of a
" generation," is 28'45 years. No satisfactory values of k are known
iu the present state of genetics, though the data on mice discussed
in Part I suggest that here k = "04 approximately. In man mating
is highly assprtative for age, and the above formulae cannot be
applied. Moreover, a change in the coefficient of correlation
between the ages of spouses would undoubtedly affect the values
of K (x), etc., if other conditions remained equal. Thus old men
would beget more children if they were more likely to have young

* Dublin and Lotka, lac. cit.
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wives. It is thus impossible to calculate the effect of this corre-
lation on selection. But a consideration of the extreme case when
the age of the wife fixes that of the husband makes it clear that
selection must follow equations of the type here arrived at, with
changes in the parameters only.

SUMMARY.

Expressions are found for the progress of slow selection in a
Mendelian population where generations overlap. The changes
are very similar to those which occur when generations are
separate.
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A Mathematical Theory of Natural and Artificial Selection,
Part V: Selection and Mutation. By Mr J. B. S. HAXDANE,
Trinity College.

[Received 21 May, read 25 July, 1927.]

New factors arise in a species by the process of mutation. The
frequency of mutation is generally small, but it seems probable that
it can sometimes be increased by changes in the environment (1,2).
On the whole mutants recessive to the normal type occur more
commonly than dominants. The frequency of a given type of muta-
tion varies, but for some factors in Drosophila it must be less than
10 "•", and is much less in some human cases. We shall first consider
initial conditions, when only a few of the new type exist as the
result of a single mutation; and then the course of events in a
population where the new factor is present in such numbers as to
be in no danger of extinction by mere bad luck. In the first
section the treatment of Fisher (3) is followed.

In a large population let pr be the chance that a factor present
in a zygote at a given stage in the life-cycle will appear in r of its
children in the next generation. If the individual considered is
homozygous, this is the chance of leaving r children, if mutation

00

is neglected/ Let X pr x
r =/(#)• Therefore / ( I ) = 1, / (0) =p0, the

r=0

probability of the factor disappearing, while/'(1) = 2 rpr, i.e.,
r=0

the probable number of individuals possessing the factor in the
next generation. The probability of m individuals bearing one each
of the factors considered leaving r descendants is clearly the co-
efficient of xr in [/(#)]m, if w e neglect the possibility of a mating
between two such individuals, which we may legitimately do if TO
is small compared with the total number of the population. If
then the probability of the factor being present in r zygotes of the
nth generation be the coefficient of xr in F(x), the corresponding
probability in the (w + l)th generation is the same coefficient in
F [/(*)]• Hence if a single factor appears in one zygote, the
probability of its presence in r zygotes after n generations is the
coefficient of xr in 8, (a), i.e. / ( / ( / • ••/(#)• • •))> the operation being
repeated n times. The probability of its disappearance is therefore

Lt 8y (0). By Koenigs' theorem (4) this is the root ofx=f(x)
in the neighbourhood of zero.
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Now in the case of a dominant factor appearing in a population
in equilibrium, and conferring an advantage measured by k, as in
Part I (5), / ' (1) = 1 + k. Since / ' (x) and / " (a;) are positive
when x is positive, and / (0) is positive, x =f(x) has two and only
two real positive roots, one equal to unity, the other lying between
0 and 1, but near the latter value if k be small. Hence any advan-
tageous dominant factor which has once appeared has a finite
chance of survival, however large the total population may be.

If a large number of offspring is possible, as in most organisms,
the series pn approximates to a Poisson series, provided that adult
organisms are counted, and since / ' (1)= 1 + k, f(x) = <1+*><*»
Hence the probability of extinction 1 — y is given by

Hence (1 + k)y = -log (1 - y) (10),

and • A = | + | 2 + ^ + . . . ,

and if k be small, y = 2k approximately. Hence an advantageous
dominant gene has a probability 2k of survival after only a single
appearance in an adult zygote, and if in the whole history of a

species it appears more than ° ' times it will probably spread

through the species. But, however large k may be, the factor may
be extinguished after a single appearance. Thus if k = 1, so that
the new type probably leaves twice as many offspring as the normal,
the probability of its extinction is still -203. If in any generation
there are m dominant individuals the probability of extinction is
reduced to ym, where y is- the smaller positive root of x =f(x).
When k is small this reduces to (1 — 2k)m. Hence if in any

generation more than °* adult dominants exist, the factor will

probably spread through the whole population.
On the other hand a recessive factor whose phenotype is advan-

tageous has a quite negligible advantage in a random mating
population provided that the number of its bearers is small com-
pared with the square root of the total population. This is best
seen by considering the case of a hermaphrodite: in a dioecious
organism the argument, though similar, is more complicated.
Let N be the fixed number of the population, and zn the number
of heterozygotes plus double the number of recessives for the
factor A in the nth generation. It therefore produces gametes in
the ratio (2N — zn)A : zua. If now the recessives have a small
advantage measured by k, the probabilities of production of each
genotype in the next generation are

(2 JV - zny A A : 2zn(;2N- zn) A a : (1 + k) zn* aa.
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Hence if, as above, f(x) be the function defining the probable
number of offspring of a dominant, so that / ' (1) = 1, the proba-
bility of r heterozygotes in the (n + l)th generation is the coefficient
° f r i n 2Nz{2N - «j

that of r recesaives the same coefficient in

[/(.)]
Hence the probability of zn+1 in the next generation is the co-
efficient of a;*n+i in 2Nzn(2N + k»n)

or, approximately, if 2n be small compared with N, in

The corresponding expression for a dominant factor is

Hence provided that zn is small the probability of escaping
extinction is much smaller than k. I have been unable to evaluate it
exactly, but it seems from a comparison with the case of a dominant
factor, that the value of zn such that the factor is as likely to survive

as to be extinguished, is of the order of (-r-) , i-e. generally >N*.

So if N is sufficiently large the probability of a single mutation
leading to the establishment of a recessive factor is negligible.

When the population is wholly self-fertilized or inbred by
brother-sister mating, on the other hand, a recessive factor has
almost as good a chance of survival as a dominant. With partial
self-fertilization or inbreeding it can be shown by methods similar
to those of Part II (6) that an advantageous recessive factor has a
finite chance of establishment after one appearance, however large
be the population.

If mutation occurs with a finite frequency any advantageous
or not too disadvantageous factor will certainly be established.
Consider a random mating population in which, in each generation,
a proportion p of the A genes mutate to a, a proportion q of the
a genes to A, and the coefficient of selection is k. Let u* be the
gametic ratio of the nth generation. But for mutation we should
have
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allowing for mutation

un) + q(un + 1 - k)
n+1

- q) (un + 1
Hence *un = kun'-pun(un + iy + q(u +1)^ + 1-^

u+lk+pu(v + l)q('u+lk)

(2-1)

approximately, if p, q, and k are small, as is generally the case. It

is clear that Un must lie between "and —— , i.e. between -

and q approximately, and that when near these values it alters
rapidly. But as p and q may be less than 10~8 these limits are very
wide. The population is in equilibrium when

pu" + (2p-q)v? + (p-2q-k + kq)u -
There is always one real positive root since p and q are positive
and less than unity. If A; be positive there is only one such root,
defining a stable condition towards which the population tends
when dominants have the advantage. If k or q be large compared

with |) this root approximates to (-) or - as the case may be,

i.e. recessives nearly disappear. If p be of the same order of mag-
nitude as the larger of k and q, u has a moderate value and the
population is dimorphic. If p be much larger than k or q, u is

small and approximates to - , i.e. dominants are rare.

If k be negative all the roots are positive if they are real,

provided q > 2p and — k (1 - q) > 2q —p. They are real if ^r, i.e.

is positive, that is to say, when q is small, if

4pAa + ( - 8p" + 20p q + 9') k + 4 (p + q)*

is positive. All these three conditions can rarely be fulfilled, but
such cases may presumably occur. Thus if p = "000,001, q = "0004,
k = -008; u'-398u> + 7197-8U-4Q3-2 = 0. Therefore u=057 ,
1893, or 3790, giving 895 %, 0/252 %, or -000,693% of re-
cessives. In such a case the middle root defines an unstable
equilibrium, the other two equilibria being stable. Thus the
above considered population would be stable with only about
iieven rece.isives per million, the small tendency of dominant genes
to mutate to recessive being balanced by reverse mutation. But if
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a group containing more than one recessive gene in twenty were
isolated from it, selection would be effective, and it would pass into
a condition where only 105 °/a were dominants, this number being
kept up by mutation.

Usually when k is negative there is only one real root. If p or — k

be large compared with q, it is small and approximates to - or -£

as the case may be, so that dominants are rare. If q be of the same
order of magnitude as the larger of p and —k, the root has a
moderate value and the population is dimorphic. If q be larger

than p or — k, u is large and approximates to —, so that recessives

are few.
The rate of approach to equilibrium is given by

provided that the constants are small. The exact expression for n in
terms of «„ depends on the nature of the roots and the side from
which an equilibrium is being approached, but it always contains
logarithmic terms. Hence the numbers of the rarer type of the
population in succeeding generations always lie between two
geometric series until equilibrium is nearly reached. That is to
say, the march of events is comparatively rapid.

In a self-fertilizing population we can similarly show that

Aun = kun-pun(un + l) + q(un + l) ..(2-3).

Only one equilibrium is possible, and the course of events can
readily be calculated in any given case. Similarly for a sex-linked
factor

In this case if k be negative, three equilibria are sometimes found,
and selection is more effective than in the autosomal case when
recessives are rare.

To sum up, if selection acts against mutation, it is ineffective
provided that the rate of mutation is greater than the coefficient of
selection. Moreover, mutation is quite effective where selection is
not, namely in causing an increase of recessives where these are
rare. It is also more effective than selection in weeding out rare
recessives provided that it is not balanced by back mutation of
dominants. Mutation therefore determines the course of evolution
as regards factors of negligible advantage or disadvantage to the
species. It can only lead to results of importance when its frequency
becomes large.
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Addendum. Equilibrium and selection in Sciara and similar
animals.

In Part I of this series all the then known types of single-factor
Mendelian inheritance were discussed. Since then Metz (7) has
discovered a new type in Sciara which is here treated on the lines
of Part I. Gametogenesis is normal in the female, but spermatozoa
are formed from maternal chromatin only. Hence there are two
types of heterozygous male, which may be symbolized by A(a)
and (A)a according as the A is received from the mother or father.
They yield A and a spermatozoa respectively, the other genotypes
behaving normally.

In the absence of selection let eggs and spermatozoa be pro-
duced by the mth generation in the proportions umA : la and
vmA : la, respectively. The next generation is therefore :

? umvmAA : (um + vm)Aa : laa.

J umvmAA : umA(a): vm(A)a : laa.

Hence

which is the same as equation (6'0) of Part I (5). Hence, as in the
above equation, we find, if ym be the proportion of recessives in the
mth generation,

1 \ m

T) ciyl
where c is a constant depending on the initial conditions. Hence
equilibrium is rapidly approached, the values in successive gene-
rations being alternately greater and less than the final value.

If selection occurs with a coefficient A; in ? s, I in £ s, then

If the population is nearly in equilibrium apart from selection
and k and I are small, so that un and vn are nearly equal,.

vn - un kun
+

vn = un — vn-\ " , both approximately.
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2k +1 un
•Hence A«n = , 3 un

2k + I /u \
and —-—n = un — «„ + logc I —) (33),

approximately. Selection therefore occurs much as with a normally
inherited autosomal factor.
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A mathematical theory of natural and artificial selection. (Part
VI, Isolation.) By Mr J. B. S. HALDANE, Trinity College.

[Received 12 February, read 24 February, 1930.]

It is generally believed that isolation has played an important
part in evolution. If an organism is to evolve so as to adapt itself
to a special type of environment, e.g. a cave or a desert, it must
not be swamped in each generation by migrants from the original
habitat.

We consider a series of cases, in each of which a new form is
favoured in a limited area, the coefficient of selection being k. In
each generation a number of migrants of the original type, equal
to the whole population of the limited area multiplied by a con-
stant I, migrate into it. k and I are taken to be small and of course
positive. I t is required to find the relationship between k and I if
selection is to take place, and what equilibrium is reached, if any.
We shall consider ten different cases.

1. No amphimixis. This is analogous to the cases considered
on p. 21 of Part I of this series*, where several reasons are
discussed which may lead to a failure of amphimixis. We may
consider two types, A and B, which do not interbreed, A being
the normal type, B that favoured in the area considered. Let un
be the ratio of A : B in the nth generation. The proportion of A
is transformed in one generation, as the result of selection and

immigration, from ^ to ——=-^ +1. Hence

«n+1 = (1 - k) un +1 («„ +1), and Awn = I (un + 1) - kun.

Hence equilibrium is possible when um = r—-., a number which

is positive only if k > I. If k < I, Aun is always positive, and the
type B disappears. If k > I, Aun = (k — l) (ux — un). Hence the
equilibrium is stable, and whatever be the value of UQ, that is to
say the initial state of the population, the final state is IA : (k — I) B.
Hence if A is to disappear nearly completely, k must greatly
exceed I.

2. Dominants favoured, recessives immigrate. Let the nth
generation produce gametes in the ratio uA : la, where aa is the
immigrant recessive type. Then the composition of the population
after selection and immigration is

It-2 . . 2wn . | x — n, , |

; Z^oAA:, .H^.Aa: | ,_. . ^o + l\aa.

* Tram. Camb. Phil. Soc. 23 (1924), 19-41.
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Thus

approximately.

Hence ux = A / J - 1, which is positive if £ > J.

If k < I, Aun is always negative, so that dominants disappear,
and selection is ineffective. If k> I the equilibrium is stable, the
final ratio being k — I dominants to I recessives.

3. Recessives favoured, dominants immigrate. With the same
convention as above, except that AA is the immigrant type, the
transformed population is

A A

A A : aa.1)2 " " - > „
Thus

_l(un+lf-kunA W - —^

approximately.
Hence uj + (2 - k/i) u , + 1 = 0,

ux = {k- 21 ±

If k< U, these roots are complex, Aun is always positive, and.
recessives disappear. If k > 4>l, Awn is negative when un lies between
the two values of um, otherwise it is positive. Hence the larger
root represents an unstable equilibrium. If

M0 > {k - 21 + >Jk(k-U)}/2l,

i.e. if initially there are too few recessives, recessives ultimately
disappear in the face of natural selection. If M0 be less than this
value, the final state is given by the stable equilibrium

ua = {k -21- </k(k-U)} 121,
and the final proportion of recessives is

{k-2l + *Jk(k-4,l)}/2k,

a number lying between unity and J. When we compare this case
with the last, it is clear that selection is much less effective. Not
only must it be relatively four times more intense to produce any
permanent result, but, if k is not much greater than U, a chance
fluctuation may push the population past the point of unstable
equilibrium, and the recessives be finally eliminated.

15-2
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4. No dominance. Consider a population as above, where, after
selection and immigration, the proportions are

A A : —. rrs-2 Aa : -. =-̂  +1 \ aa,
(un+l)2 LK + 1)2 J

K, as well as k, being small and positive. If K were negative, the
population would come into equilibrium in the absence of immi-
gration. The most important case is that in which K <k. We have

, un + (l
Wn+1 (l-K)un + l -

so that
. Kun(un— l) + kun — Iun(un + 1Y . . ,

Aun = V-^-Z ^ 5-1-5 , approximately.
un +1

Hence

i.e. «„, = [K- 21 ± ̂ /ikT-SKl-i- K2}/21.
The roots are real if 4W + K2>SKl. This condition is obviously

fulfilled if k > 2K. But both are negative, i.e. no equilibrium is
possible, if 21 > K, and I + 4K > 4k. Hence for an equilibrium to
be possible K > 21, or 4-k > 4K + I. If only the former is true one
root is positive, and one negative. The positive root represents
a stable equilibrium, and this is reached whatever the initial com-
position. If K > 21, and 4& > 4K +1, both roots are positive, the

"smaller representing an unstable equilibrium, so that u0 must
exceed the smaller root for selection to be effective.

In any case, when equilibrium is reached, the proportion of
recessives is

K* + 2kl -4KI-
2{k-2K?

If k—2K, i.e. the heterozygotes are exactly intermediate, this
expression is equal to 1?/K2.

5. Sex-linked domitiants favoured, recessives immigrate. Let
the Tith generation produce eggs in the ratio unA : la, spermatozoa
in the ratio vnA : la. After selection and migration, the population
is in the proportions

and - ^ Af : \^—^\ aj.
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T h u s „ , _ 2uv + u + v
n+1- + + 2

_
Vn+1~

_
Vn+1~i-k+i(un+iy

Hence, since «„ - vn is a small quantity,
A«n = " 9 " + ——- - fcn (wn +1), approximately,

and Ayn = «„ — «„ + fotB — lnn («„ +1) , approximately.

Thus Awn = ", , n - lun («„ +1), approximately,

and 3«(M00+l)2=A(Mto+3), i.e. ux = {k-6l± 'Jk (k + 2U)}/Gl.

The roots are always real, but neither is positive unless k > I, and
one is always negative. Hence, if k < I, selection is ineffective,
whilst, if k > I, the population, whatever its initial composition,
reaches a stable equilibrium in which the proportion of recessive
males is J (Vl + 2U/k — 1), that of recessive females being the
square of this quantity. Clearly they may assume any value
between 0 and 1.

6. Sex-linked recessives favoured, dominants immigrate. Adopt-
ing the same convention as above, we find

2unvn + un + vn + 2l (un + 1) (vn +1) _
Un+1~ u + v + 2 + 2k • Vn+1~n \+k

Thus Awn = -2-jr— ^ +1 (un + 1), approximately,

Avn = un-vn — kun +1(un +1), approximately,

and Awn = I (un + 1) o". " *, , approximately.

Thus Sl(u

i.e. um = [3k -6l± -J3k (3k - 81)} /(Ql - 2k).

The roots are real if k > 81/3. Itk< 81/3 selection is ineffective.
If 31 > k > 81/3 the larger root represents an unstable equilibrium,
the smaller a stable. So selection is ineffective if the original
population contains too many dominants. If however k > 31, one
root is negative, the positive root represents a stable equilibrium,
and selection is effective whatever the original composition. When
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stable equilibrium is reached the proportion of recessive males is
\ {1 + V9 — 24>l/k\. The proportion may thus have any value be-
tween \ and 1. The proportion of females is the square of this
number.

In the remaining four cases we first consider a character
determined by two genes, and then generalize the result to apply
to one determined by. m. In the former case we can clearly repre-
sent any population by a point in a plane. If our coordinates are
u and v, the ratios of the genes A : a and B:b,yve require one

quadrant of an infinite plane. If we plot 7 and =-. or
M r r w + 1 v + 1
- z-Tj and Y—fs > which correspond to the actual proportions
of genotypes, all populations can be represented within a finite
square. Under the influence of natural selection the representative
point takes up a series of positions, which, if selection is slow, are
very close together, and lie on a definite trajectory passing to a
point of stable equilibrium. In the case of m genes, the popula-
tions are represented by points in ?u-dimensional space, through
each of which, in general, passes one and only one trajectory.

7. Double or single dominants {i.e. all genotypes save aa bb)
favoured, double recessives immigrate. Consider a population whose
nth generation produces gametes in the ratios unA : la, vnB: 16.
The proportion (un+ 1)~2(«B +1)~2 of double recessives is reduced
by k(un+l)~a(vn + 1)~2 as the result of selection. Hence the
proportion («„ + l)~a of the genotype aa is reduced by

At the same time it is increased by I as the result of immigration.

Thus ,<n+1 =

whence
KM

n+iy~lUn (Un +1-')' aPPr o x i m a t e ly .

l i ) ~lVn (Vn +1}> a P P r o x i m a t e l y -
Thus (ux

Any of the singly infinite number of populations in which the
proportion of double recessives is l/k is therefore in equilibrium,
provided that k > I, and the equilibrium is stable.
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We have T- 2 = -r-5, approximately

s o t h a t
v0

If therefore we put xn = l/(un+ 1), yn = lj(vn+l), xn and yn are
the proportions of the genes a and b respectively, lying between

1 —a; 1 — y
0 and 1, and - = -—&. The traiectories are thus all straight
lines passing through the point (1, 1) and all end on the segment
of the hyperbola xy = (l/k)k included within the square containing
the representative points.

In the case of m genes, let zn be the proportion II (run +1)~2

of multiple recessives, where run is the ratio of Ar: a,.

Thus run+i=r-z "Wn

Arwn = run (run +1) (kzn -1).

Hence the trajectories are straight lines passing through

(1,1,1, . . . ,1)
and ending on the (m — l)-dimensional manifold

where Xi,Xi, etc. are the proportions of the gene a-i, a%, etc. in the
population. The final proportion of recessives is again k/l.

8. Double recessives favoured, double dominants immigrate.
With a population constituted as in the last case,

so that
ku

Aun = I (un +1) - ( t t n + 1 ) (^n + iy > approximately,

kv
At)fl = I (»„ +1) - ( K + 1 ) 2 ^ + 1 ) . approximately

Thus Hu^
or, putting ux +1 = vx + 1 = p,

lp*-kp + k = 0.
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This has two real positive roots if k > 256Z/27. Otherwise the
roots are complex and selection is ineffective. When the roots are
real the larger represents an unstable equilibrium, the smaller a
stable. Plotting v against u, each representative point lies on a
trajectory leading either to the point of stable equilibrium or to
u — v—<x>. The two families of trajectories are separated by a
curve passing through the point of unstable equilibrium, symmetrical
about the line u = v, and having w = 0, v = 0 for asymptotes. At
equilibrium the proportion of double recessives is necessarily
greater than ££$.

In the case of m genes,

_ r
rUn+1-l+/c(run+I)yn>

so that A run = (run + 1) (I - k run yn).
Putting rux +1 =p, we have

lp2m-kp + k = 0.
This equation has two real positive roots if, and only if,

k 2m2m

>I >(2m-
Again the larger represents an unstable, the smaller a stable
equilibrium. The families of trajectories either pass to the latter
or to infinity, being separated by a (TO — 1 )-dimensional manifold
passing through the point of unstable equilibrium. At equilibrium

the proportion of double recessives necessarily exceeds -—=—^—.

We now pass from these cases, characteristic of allopolyploids
such as wheat, where a character may be determined by any one
of a number of genes, to cases where, as in many diploids, all of
several dominants are needed to determine it.

9. Double, but not single, dominants selected, double recessives
immigrate.

In a population composed as above the favoured individuals
possess at least one A and one B. Now a proportion [1 — (vn +1)~2]
of the A A and Aa zygotes are BB or Bb. Hence the effect of
selection is to increase the numbers of A A and Aa by the factor
[1+&-&K.+I )" 2 ] . Thus

un(un+l)[l+k(vn*+2vn)(vn + l)-*]
Un+1 un[l+k(vn* + 2vn)(vn + 1)-2J + 1 +1 K + I)2 '

so that

AUn={u+i){v+n\f ~lUn (Mn + 1 ) j a PP r o x i m a t e l y .

> aPPr o x i m a t e ly-
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Thus
«. = »,=0, or l(ua + l?(vx + iy = k(uj + 2uj = k(vj+2vj.

Hence ux = v^. Putting (a , 4-1)2 = q, we have
lq*-kq + k = 0,

The roots are real if k >A>1. Otherwise selection is ineffective,
and dominants disappear. If the roots are real, both exceed unity,
and therefore represent equilibria, the larger representing a stable
equilibrium, the smaller an unstable. The proportion of double
dominants in the population in stable equilibrium is

which necessarily exceeds £.
As before, the trajectories form two families, one passing to the

point of stable equilibrium, the other through the point (0,0) when
u and v are plotted. They are separated by a curve passing through
the point of unstable equilibrium.

Generalising for the case of m genes Ar, the ratio Ar: ar in the
nth generation being run, the proportion of multiple dominants

m

r=l

Of these rM" are ArAr, —x are Arar. Thus
run + 2 run + 2

r"" + 2

and A run = (run + 1) ( ^ ^ - 1 rU^j ,

whence ky^ =lrux (riix + 2).
Hence ruw is independent of the value of r. Putting

we have yx — z~m, where lzm — kz + k = 0.
This has two real positive roots if, and only if,

k mm

The larger root of z corresponds to small values of ux and defines
an unstable equilibrium, the smaller a stable equilibrium. At the
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stable equilibrium z < m/(m— 1), so that y^ > {(m — l)/m}m > \.
The trajectories in m-dimensional space again form two distinct
families.

10. Double, but not single, dominants selected against, double
dominants immigrate. The effect of selection is as in the last case,
the sign of k being changed. Thus

_ un (un + 1) {1 — k (vn
z + 2vn) (yn +1)~2} +1 (un +1) 2

and Awn = I (un +1) — -—" " ^ , approximately,

Aun = I (vn +1) - "_"" ^ _T"^2, approximately.

Thus I (ux + I)2 (v + I)2 = Au. »„ («. + 2) = A;Mo)«. (u. + 2).
Hence ^ = 1)̂ , being a root of

«.* + (4 " k/l) uj + (6 - 2A/0 «x
2 + 4M + 1 = 0.

This equation always has two real negative roots. It has also two
real positive roots if and only if k > 2~10. 7"1 (Vl7 +1)6 (Vl7 - 3)1,
or about 3"57 I. Otherwise selection is ineffective. If k exceeds
this value the situation is similar to that of case 8, the larger root
representing an unstable equilibrium, the smaller a stable. At
stable equilibrium the proportion of double dominants is less than

23 + <Jl7\2

—~x j , or 71'8%; that of double recessives exceeds

( ^ J , or 2-32°/0- As before, the trajectories in the u, v

plane fall into two families, one passing to infinity, the other to
the point of stable equilibrium.

In the case of m factors,

iin k(run + l)yn ^
run + 1 run + 2

' ^ 1 kfn

so that A r u n = (ru

At equilibrium
«a,+ 2

or, if ux + 1 =p,

n



of natural and artificial selection 229

This has two real positive roots if

k v 8m + 1 + 3 /4m + 1 + \'8m + l \m

4m
yn /4m — 1 — v8»i + l \m

) \ 4(m-l) ) •

As above, the larger root represents an unstable equilibrium, the
smaller a stable, and the trajectories fall into two families. At
equilibrium the proportion of double dominants is less than

/4m - 1 + s/8m + 1 \'B /4m + 1 - V8?n, + l
\ 4m ) \ 4m

that of double recessives exceeds

1 - l \ m

V 4m

It will be seen that in every case k/l must exceed a certain
critical value unless the selected type is to be completely swamped
by immigration. When this value is exceeded it is further neces-
sary, in some cases, that the proportion of the selected type in the
initial population should exceed a certain fraction. Now in nature
the value of k/l must fluctuate widely round an average. Occasion-
ally a flood must sweep large numbers of normal-eyed aquatic
animals into a cave where the majority are blind, and so on. And
where one of the equilibria is unstable, this may lead to the dis-
appearance of the selected type. It would thus seem that in
partially isolated communities selection is most likely to be
effective when it favours a dominant or sex-linked character.

The problem can readily be generalized in several ways. Thus
the effects of partial inbreeding might be considered. As however
the results of complete inbreeding (case 1) are not very different
from those of random mating, the general character of the solution
will be unaltered.

One group of cases of a practical character will be considered,
namely the result of breeding plants which are partially cross-
pollinated, but where seed is only gathered from those of a desirable
type. For the sake of simplicity it is assumed that rogues (plants
of undesirable types) are destroyed before they produce pollen.
We also assume complete self-sterility, so that all fertilization is
by pollen of other plants. The average proportion of pollen from
the wild population surrounding the group under selection is
denoted by I, which in this case need not be a small quantity.

If the cultivated plant be recessive to the wild population,
whether for one or many factors, it is obvious that the proportion
of rogues in each generation is I. If it is dominant to the wild
type with respect to a single factor A, suppose that, after the
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removal of rogues, gametes are formed in the ratio un A : 1 a.
After admixture of foreign pollen, the ratio of pollen grains will be
(1 — I) vn A : (1 + lun) a. Hence zygotes are formed in the ratios

(1 -1) un
z A A : (2 - 1 + lun) Aa: (1 + lun) aa.

The A A and Aa zygotes contribute to the next generation, so that

_
'n+1

=

(2-l+lun)un 2-l + lun

whence ux = \/(2/l — 1).

This represents a stable equilibrium, approached fairly rapidly
from both sides. At equilibrium the proportion of rogues is

or g .

The expression in the case when the selected type is dominant
to the wild with regard to several factors is more complicated,
but such a case is too improbable to be worth considering.
I'rovided that it is recessive for even one factor, all other factors
are automatically eliminated in one generation.
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A Mathematical Theory of Natural and Artificial Selection.
Part VII. Selection intensity as a function of mortality rate. By
Mr J. B. S. HALDANE, Trinity College.

[Received 12 November, read 8 December 1930.]

The assumption is often made that when competition is ex-
tremely intense at any stage in a life cycle, natural selection is
bound to be intense also. This assumption will be examined
quantitatively and it will be shown that the intensity of selection
may diminish and become negative at high rates of elimination,
while at its best its increase is extremely slow.

The intensity of competition is measured by the ratio, z, of
organisms eliminated, to survivors. This may be small, e.g. z = 01
or less for the period between birth and maturity in civilised human
societies. It may exceed 106 in marine organisms producing many
million eggs per year, or spermatozoa of which 10° are ejaculated
at a time. But in few cases can it exceed 1012.

Confining ourselves for the moment to a population consisting
of two types A and B, the intensity of selection is measured by the
coefficient of selection k, where the ratio of A to B is increased
1+k times as the result of selection, k is taken to be small through-
out the argument.

Consider, a character whose measure x is normally distributed,
according to Gauss' law, in the A and B groups, the standard
deviation being the same in each, and the differences between the
means and the standard deviations being small in comparison with
the standard deviations. For example, Johansen (1926) found the
mean breadths of 8091 and 8*152 mm. and standard deviations of
•400 and -405 mm. in two lines, BB and OO, of beans, the difference
being clearly significant in the first case, doubtfully so in the second.
If all individuals in which the variate x falls below a certain value
are eliminated by selection, we can readily calculate the proportion
of the whole population eliminated, and the proportion of A to
B among the survivors.

Conditions are not grossly dissimilar under natural selection.
We may imagine a variate, to be called viability, which is normally
distributed and such that only those individuals possessing more
than a certain viability survive. The large size of its standard
deviation compared to the difference of the mean values would
signify the relatively large part played by chance in natural selec-
tion. The best studied case is that of pollen-tube growth, described
by Buchholz and Blakeslee (1929). Here those tubes which arrive
first at the ovules are selected. The distribution of growth rates

9-3
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is definitely skew, but the skewness is not likely to affect the
general character of the result if the two types compared are
sufficiently similar. Where viability depends on a greater variety
of accidental causes, as is generally the case, the distribution is
likely to be more normal.

Without loss of generality we can put the initial numbers of
A and B equal, and take the mean value of # as zero and its
standard deviation as unity. We suppose the mean value of x for
the A type to be \ and its standard deviation to be 1 + /i, the
corresponding values for B being — X and 1 — p. The ratio of the
frequency of any value of x in the population to that in a strictly
normal population is 1 — (1 + x2) ( \ + /x#)2 + higher powers of \ and
ft. Hence the mixed population is normal to the second order of
small quantities provided that Xx and fix2 are small, x will rarely
exceed 7 even in a population of 1012.

Then provided that the population is numerous compared with
both the numbers surviving and eliminated, the survivors will be
those members for which x > X, X being given by

the proportion of the A type exceeding this value is

I fL J ehdt + r \ eV
</2irJX v 2TT J (X- A)/(1 + M)

T + -—.— e ~ *** approximately,
z + 1 V2TT '

so that k =
V2TT

the value of X being found as above.
First consider the case when y. = 0, i.e. the standard deviations

are equal. The value of q = kj2\ is plotted against log10 z in the
figure (calculated from Pearson's (1924) tables). When z=l,
q = (2/7r)l = -798. When z is large, we may put

= t - _ approximately,

whence q = ^J loge ~- approximately.

So the intensity of selection only increases extremely slowly
with z. Thus q is only doubled when z increases from 1 to about
6-4, or from 10 to 1800, and only increased 9 times over the whole
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range from 1 to 1012. On the other hand when z is small, q approxi-
mates to z V— loge 2TT Z2, a small quantity of the order of z, and is
roughly proportional to z over small ranges. For example, when
^=10"*, g = -0004, and when ^=10~2, g = -03. To sum up, the
efficiency of selection increases very rapidly with z until about 80 %
of the population is eliminated, and thereafter very slowly.

The only experimental data known to me are those of Correns
(1918) who measured the sex-ratio of Melandrium, when pollinated
with mixtures of male-producing and female-producing pollen, and
used numbers of pollen-grains either less than that of ovules, so
that z = 0, or greater, in various proportions. When z approximated
to 6, k was 0-195; when z was about 142, k rose to "710. The value
of k thus increased only 3'6 times while z increased 24 times. Ac-
cording to Fig. 1 the increase of q should be only 1*8 times. But the
values of both z and k are very uncertain, thus the value "195 of
k has a standard error of "07. Figures well within the limit of
experimental error would give complete agreement with the theory.
Moreover /A is probably not zero nor is the distribution of growth
rates normal. Certainly, however, k does not increase anything like
proportionally to z, even when \ has the somewhat large value of
0-l, which as we shall see later will tend to exaggerate the rate of
increase of k with z.

When fi is not zero the case is rather more complicated. If \
and ft have the same sign, i.e. the type with the largest mean has
also the largest standard deviation, selection favours them unless
X is negative and less than — \//A. In this case the group of lower
average viability will be favoured when competition is very slight,
but their selective advantage will be extremely small at best. For
example, Johansen's bean line GO had a mean breadth of 8*152
mm. with standard deviation '415, while the corresponding figures
for the line MM were 7976 and 348. Hence \ = -101 and y, = -076.
Selection for greater breadth would favour line MM slightly when
z was less than 01, while for higher values GG would be consider-
ably favoured, k being '159 when 2=1.

In many cases the coefficient of variation of the two groups is
approximately equal, i.e. fi — X. In four of Johansen's pure lines
the coefficient of variation for length only varied between 50 %
and 4'4 °/o. In a family described on p. 136 two slightly impure
genotypes had coefficients of 7-0 °/o and 6'8 °/o, the heterozygote a
coefficient of 68 °/o. It thus seems likely that in a large number of
cases \ and yu will be very nearly equal. When this is the case q is
small and negative for low mortalities, attaining a minimum value of
— 0070 when z = -066, i.e. with a mortality of 62 °/o, vanishes when
z= "1886, i.e. with a mortality of 159 °/0>

 aQd then increases, being
•798 whenz = 1 (50°/o mortality), 234 whenz = 106, and 57"6 when
z = 1012. For large values of z, k varies as log z.

Even though \ and /* are not quite equal, in a very large number,
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perhaps the majority of cases, X//i will lie between -5 and 2, and
the direction of selection will be reversed at a mortality of between
31 °/o and 23 %• I* is of interest to note that during the last fifty
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Fig. 1. Abscissa: Log10z. Ordinate: q, which measures
the intensity of selection.

years infantile mortality in most civilised countries has fallen from
well above the critical value of 15"9 % to well below it. It seems
probable, therefore, that the direction of selection for certain genes
has been reversed.
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If X and fi have opposite signs, the group of highest average
viability will be favoured until 'X exceeds - X/fi, i.e. until

7^

J -

If — \/fi is fairly large, say greater than 3, this becomes approxi-
mately

In practice however since z rarely exceeds lO12, the direction of
selection is not likely to be reversed if — /* < X/7.

In the figure q is plotted against z when
/i = 0, X, -10\, - 2X, - \X, - \\, - \\.

The maximum intensity of selection is reached when z is greater
or less than unity according as — /A/X is less or greater than unity.

But wherever it is not zero the results of slight and intense
competition are in opposite directions, although the required com-
petition may sometimes be too intense or the selection too slight
to be of practical importance. This is in full accordance with the
views of Bidder, who points out that, where " cataclasms" occa-
sionally destroy the vast majority of a species, characters which are
useless or worse under normal conditions may be selected. He
specially mentions the case of a violent or erratic response of an
animal by migration or otherwise to unfavourable environments,
which would be likely to lower the average viability, but increase
its dispersion.

It is easy to extend the above arguments to a population con-
sisting of many genotypes. To take one example, suppose that
fi = 0, but X is normally distributed with a standard deviation a.
Then the new frequency of any value of X will be given by

The new mean value of X will therefore be

f "
J — a

P
J —

q
= J ^ ' l ^ ' d k , approximately,
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All the resulta here given apply only to the results of a single
act of selection. The way in which the population will change
depends on the way in which the mean viability and its dispersion
are inherited, and on the system of mating. The effects of these
have been .considered in former papers of this series.

The theory can readily be extended to cover cases where X and
fi are no longer small, but the results are no longer elegant or simple.
In particular the proportion of types in the original population
must be taken into account. When the difference of the means is
large compared with the standard deviations, A being more viable
than B, it is convenient to take « as the intensity of selection, where
u is the ratio of A to B before, and ue* after selection, K and k are
of course equal when both are small. It is clear that

+ UZ/'

approximately, so that the intensity of selection is proportional to
z when this is small, but becomes very large when z = 1/w. Such
intense selection occasionally occurs in nature, for example between
normal types and semi-lethal mutants, but its results as between
competing types of organism would be very rapid, and it is not of
much interest in a study of evolution. In general when X is not
small, the value of q for any value of z will be. increased.
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A Mathematical Theory of Natural Selection. Part VIII.
Metastable Populations. By Mr J. B. S. HALDANE, Trinity College.

[Received 20 November, read 8 December 1930.]

Almost every species is, to a first approximation, in genetic
equilibrium; that is to say no very drastic changes are occurr-
ing rapidly in its composition. It is a necessary condition for
equilibrium that all new genes which arise at all frequently by
mutation should be disadvantageous, otherwise they will spread
through the population. Now each of two or more genes may be
disadvantageous, but all together may Tse advantageous. An ex-
ample of such balance has been given by Gonsalezd). He found
that, in purple-eyed Drosophila melanogaster, arc wing or axillary
speck (each due to a recessive gene) shortened life, but the two
together lengthened it.

Consider the case of two dominant genes A, B, where the
relative chances of producing offspring by the four phenotypes are
as follows: AB 1, aaB 1 —k\, Abb 1 — k2, aabb 1 + K. ki and k2
are small and positive. K is small, and if negative its absolute value
is less than ki or k2.

Consider a random mating population where in the nth genera-
tion the genie ratios are UnA: l a ; vnB -. lb.

Then
. (un

2 + un){l-
«„ {1 - h (1 + vn)~*} + 1 + \K - h (vn* + 2vn)} (1 + vn)-*'

, . un{k1(l+vn)
2-K-k1-ka} • , ,

whence Awn = — ! —7- •—• ^ , approximately.

(1 + «„) (1 + vny

So, taking a generation as the unit of time,

du_u{k-L(\+vf-K-k1-ki)
( ) ( r

Let x = 1/(1 + u) (the proportion of recessive genes) and
y = 1/(1 + v), so that l>a>>0, l>y>0.

Then ^ =
at

Similarly ^ = ^ ( 1 - y ) [ ( £ ' + A;l + A;2)^-i
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Clearly x = 0, y = 0; and x = l, y = 1 are the only stable equilibria,
though Fisher (2) appears to regard a mixed population as stable
in such a case. Putting

we have dy y* (1 - y) (a* - a*)
W e Q a v e 2 * ( l ) ( « 6 » )

whence / ( y , b)-f(x, a) = c=/ (y 0 , b)-f(x0, a),

where x0, y0 represent the initial conditions, and

/ {x, a) = a?/x — a2 log x + (a2 — 1) log. (1 — x).

Each value of f(y0, b) —f(x0, a) determines a trajectory passing
to'(0, 0) or (1, 1), which represent populations composed entirely
of double dominants or double recessives respectively. The mini-
mum value of f(%, a) occurs when x = a and is

a —a? log a+ (a? — 1) log (1 — a),

and f (x, a) is always real and positive, becoming infinite when
« = 0 o r l . If c >/(&, b) —f(a, a), there are two values of x cor-
responding to each value of y, but some values of x are excluded.
Hence the trajectories fall into four families divided by the two
branches of the curve whose equation is

/ (y, b) - / ( * , a) = / (b, b)-f (a, a).

This consists of two trajectories running from (0,1) and (1, 0) to
(a, b) and two from (a, b) to (0, 0) and (1,1). These are represented
by the dotted lines in Fig. 1, where a—\, b = \. The former
divides the whole area into two portions. Populations in the one
tend to the values x = y = 0, in the other to the values x = y = 1.
Some examples of trajectories are given. It is clear that a popula-
tion consisting mainly of AABB or aabb tends, as the result of
selection, to return to those compositions. If the signs of K, k\,
and &2 be changed, the same trajectories will be described in the
reverse direction.

If the original population is AABB, the factors A and B will
genei'ally have a small tendency to mutate to a and 6 respectively.
Let pi and p% be the probabilities that A will mutate to a and B
to b in the course of a generation. These appear to be generally
small numbers of the order of 10"6 or less. The population is in
equilibrium when x = pi/ki, y=pilk2 (Haldane(3)). In general
x will be much smaller than a, and y than b, but from time to
time chance fluctuations may isolate a population where this is
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no longer the case. Its representative point will lie in the area
whose stable type is aabb, and the whole population will be trans-
formed into this type, apart from rare exceptions due to back
mutation. In such a population modifying factors will be selected
in such a way as to increase the viability of the aabb type, i.e. the
value of K. But even so it may be expected to be swamped by
hybridisation on coming into contact with the original AABB
population, unless one of two things has happened.

aabb may possess or develop characters which render mating
with AABB rare. For example, it may have a different flowering
time if a plant, or a different psychology if an animal. In this case
the species will divide into two. Or chromosome changes may
occur to cause close linkage of A and B when the populations are
crossed. Thus if the loci of A and B are in the same chromosome
an inversion of the portion containing them will lead to their
behaving as a single factor on crossing. In this case if K is positive
the whole species will be transformed into the type aabb. A species
which is liable to. transformations of this kind may be called meta-
stable. Possibly metastability is quite a general phenomenon, but
it is only rarely that the circumstances arise which favour a change
of the type considered.

In a population which is mainly self-fertilised, conditions are
probably more favourable. Were self-fertilisation universal, the
proportion of aaBB zygotes, when mutation and selection were
in equilibrium, would be $pi/kx. So that of aabb would be
Pipa/l'ikikz) or less. This is presumably a small number, probably
of the order 10~9, and when such individuals occur, they will
generally be wiped out by chance. But their probability of
spreading through the population, though small, will be finite,
and roughly equal to IK (Haldane (3)). Hence, within a geo-
logically short period we may expect evolution to occur in such
cases.

The theory may be extended in two different ways. We may
consider m genes. In this case any population can be represented
by a point in ?«-dimensional space, all populations being repre-
sented by the points of a regular orthotope, or hypercube. Each
of the 2m apices of this figure represents a homozygous population.
Clearly the condition for stability of any such population is that
no change in a single factor should yield a more viable type. In
other words, no adjacent apices can both represent stable popula-
tions. The maximum number of stable populations is thus 2m~1,
represented by the vertices of the polytope arising from the
omission of alternate vertices of the regular orthotope. This is not
regular but only semi-regular if m > 3. In general the numbers of
stable genotypes will be much smaller than this, and may not
exceed 1.
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If there is more than one stable population the orthotope is
divided into two or more regions analogous to the two areas of
Fig. 1. A population in any given region tends to the same point
of stable equilibrium. The regions are separated by a variety
(surface or hyper-surface) of m — 1 dimensions. If we take as our
variables x%, x%, #3. etc. not the proportions of recessive genes, but
their squares, i.e. the proportion of recessive zygotes, we have

i
3, xlt

1.0 jr

0 . 8

0.6

0 . 4

0.2

0 , 6 0 . 8 1.0

Fig. 1. Abscissa and ordinate. Proportions of genes a and & in a population.
Trajectories of points representing populations are represented by continuous
lines, and boundaries between families of trajectories by dotted lines.

where /i(a^, x3,,xit...) is linear in each of x2, xa, etc. and has 2"*-"1

constant coefficients; and m — 1 similar equations. The (m-1)-
dimensional space defined by x2, x3, etc. is thus divided into two
regions, in one of which x\ increases with time, whilst it diminishes
in the other. These are not necessarily connected, as is obvious in
the case where there are only three variables, and f\ (x2, #3) may
define a hyperbola which divides the unit square into three regions,
in two of which dxi/dt has the same sign. Hence in the course of
a trajectory dxi/dt may change sign several times. I have been
unable to obtain the general equation for the trajectories or for
the boundaries of the regions in which they lie.

So far we have only considered cases of complete dominance.
If the heterozygotes are exactly intermediate in viability between
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the corresponding homozygous types, we have, in the terminology
of the case first considered,

dt

Thus

dy_y(l-y)(x-a)> ^ ^ a _ K + k2 5 _ K + h

Hence *<* " « > ^ , i f f izJ

By an argument similar to that used above we can show that
the trajectories fall into two families, separated by one branch of
the curve whose equation is

(x\a (\ - «y-* _ (y\b (1 - sA1-
W U-J ~\b) \l-b)

The general case where heterozygotes are of any arbitrary
viability is rather complicated. But where a heterozygote has a
greater viability than any genotype differing from it in respect
of a single gene only, there will be a stable population including
some of these heterozygotes. Thus if aabb has a viability 1+K,
AABb of 1 + K%, all other genotypes having unit viability,

J = ooy (1 - x) [K^y - K2 (1 - x) (1 - y)},

^ K% (1 - xf (2y -1)}.

The stable equilibria are at x = l, y = l and x=-Q, y = \. But
I have not been able to integrate these equations, since the
variables are not readily separable. Nevertheless it is clear that
the trajectories fall into two groups bounded by a curve passing

through (0,1) and ( j ^ ^ . l ) .

In the case of m genes, if heterozygotes have an advantage as
such there may be points of stable equilibrium anywhere in the
m-dimensional space, but it seems fairly clear that their number
cannot exceed 2m~\

It is suggested that in many cases related species represent
stable types such as I have described, and that the process of
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species formation may be a rupture of the metastable equilibrium.
Clearly such a rupture will be specially likely where small com-
munities are isolated. I have to thank Mr C. H. Waddington for
calculating and drawing the figure.
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The former papers of this series have been mainly occupied with cases 
where no genotype was completely eliminated, though some were fitter 
than others. The main earlier work dealing with the case where certain 
genotypes were wholly prevented from breeding, is that of ZIRKLE (1926). 
He considers selection in random mating populations where the characters 
are determined by a number of unlinked genes, all present in equal pro- 
portions. This case has assumed a special importance in experimental work 
where a cross is made between pure lines. Thus LITTLE and his colleagues 
have investigated the susceptibility of mice to tumor transplantation. A 
tumor can be transplanted into any individual carrying each of k dominant 
genes, where k varies between 2 and 12 or more (CLOUDMAN 1932). There 
are only two phenotypes, susceptible and immune. If either of these is 
bred from in any generation to the exclusion of the other it is clear that in 
any generation the ratio of dominant to recessive genes will be the same in 
all the k loci, apart from differences due to the smallness of the sample. 
This is so however the population is derived, whether it is an Fz, a back- 
cross or some later derivative. In consequence, as ZIRKLE pointed out, we 
can fix our attention on one of the k gene pairs, and any statement made 
about it is true for each other pair. 

HALDANE (1926) has already dealt with the case where all the genes 
concerned are not present in equal numbers. This case, though important 
for evolution and eugenics, is relatively intractable. ZIRKLE’S analysis, 
though accurate and valuable, can be enormously simplified. Further he 
confines himself to random mating populations, and a geneticist desiring 
to fix a character would probably employ inbreeding. Hence certain theo- 
rems on inbreeding combined with selection will be proved. Again there is a 
close analogy between the populations considered and autopolyploid popu- 
lations. 

In each case we shall consider a population derived from an F1 ob- 
tained by mating two pure lines, though many results can be extended to 
other populations. These latter are marked by an asterisk. The results are 

* Part of the cost of the mathematical composition in t h i s  article is paid by the GALTON AND 
MENDEL MEMORIAL FUND. 
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given for very large populations, but they may be regarded as giving 
probabilities for smaller populations, provided that these are not so small 
as to entail appreciable inbreeding where mating is supposed to be a t  ran- 
dom. We shall suppose that all genes are autosomal and unlinked. By the 
expression “multiple dominant” is meant a zygote containing at  least one 
of each of the k dominant genes, by “multiple recessive” a zygote con- 
taining none of them. 

SELECTION OF MULTIPLE DOMINANTS; RANDOM MATING 

This case is very simple for the following reason. A zygote is eliminated 
if it is recessive for any gene. The probability of this being the case is the 
same whatever other genes are present. Each of the k genes A ,  B, C,- 
must be present in a multiple dominant. Since mating is a t  random the 
genotypes in F, are in the ratios 

u,2AA :2u,Aa: laa 
and so for the other genes. The effect of eliminating all recessives for any 
gene will be to remove all aa zygotes, and some of the A A  and Aa.  These 
latter are eliminated in equal proportions, as A is not linked with any of 
the other genes concerned. The survivors are in the ratio 

u,A A : 2A a, 

(un+I)A : la  
giving gametes in the ratio 

whence 

just as when one gene only is concerned, and 
Un+l=  Un + 1 

Un = uo +n 
so that the”proportion of multiple dominants in F, is 

D,= 1- I”. (1.1*) t (uo+n+1)2 

But in Fz, u2= 1, whence u,=n-1, and 

D, = (1 - n-2)k. (1.2) 
This is equivalent to ZIRKLE’S formula of p. 562 but simpler. For ex- 

ampleif k=8,  D2=(1-$)80r .1001, Ds=(1-1/25)80r .7218. 

RELATION BETWEEN GAMETES OF SUCCESSIVE GENERATIONS OF A RANDOM 

MATING POPULATION, WITHOUT SELECTION 

Before solving the next two problems an expression must be found for 
this relationship. Let F, be formed from gametes such that the proportion 
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of each type of gamete carrying r dominants is g,. There are kCr types of 
gamete carrying r dominants, each present in equal numbers. Hence 

k 

r=O 

Let Z(i, j) be the proportion in F, of each type of zygote homozygous 
for i dominant and j recessive genes. Clearly k 5 i + j  5 0 ,  and there are 

k! 
i !j !(k -i - j) ! Or k c i  k - i c j  different types of such zygote, so that 

k c i  Zk-iCj Z(i, j) = 1. 
k k-i 

i = O  j=O 

It also follows that such a zygote can be made up in k-i-jCr ways from 
gametes carrying (i+r) and (k-j-r) dominants, so that 

(2.1*) 

Sucha zygote produces gametescontaining from i to k- j(inc1usive)domi- 

nant genes in proportions which are terms in the expansion of 

That is to say i t  contributes to one type of gamete carrying m dominants 
a proportion 2’+jPk k-i-jcm-i of its gametes. so if gml be the proportion of 
each type of gamete carrying m dominants produced by F,, we have, since 
there are k c i  k - i c j  types of zygote in the proportion Z(i, j) and kCm types 
of gamete in the proportion g,l, 

I m k-m 

(2.2*) 

This expression can readily be altered if any classes of zygote are re- 
moved by selection. 

ELIMINATION OF MULTIPLE DOMINANTS, RANDOM MATING 

The classes of zygotes eliminated are recessive for none of the genes, 
that is to say in the expression for Z(i, j),  j = O .  Hence the proportion of 
dominants in F, is 
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D,= CkCi z(i, 01 (3.1*) 
i = O  

and the gametes of the survivors, which form F,+l, are given by the ex- 
pression 

m k-m 

2-k C2i m C i  C 2j  k - m c i  Z(i, j) 

1 -Dn 
(3.2*) 

j=1 - .  i=O 
g" = 

Further in the gametes of F,, every g, = 2-k, and in all later generations 

For purposes of calculation it is desirable to write out the necessary 
formulae for each Z(i, j) from equation (2.1). These number +(k+l) 
(k+2). They can then be substituted in equations (3.1) and (3.2). For 
example if k = 6 we obtain 28 such expressions as 

gk=o, 

Z(2, 0) =2gzg6+8g3g5+6g42. 

Whence 

Dn = 2 g ~  -g62+6g6(2g1 + 1OgZ+2Og3+2Og4+5gS) 
+30g4(gz+4g3+3g4) +20g32 

1 

8(1 -Dn) 

1 
16(1 -Dn) 
+g1(56gl+20Ogz+ 160g3+65g,+ log5) + 1Og2( 14gz+ 17g3+4g4) +3Og3'] 

1 .  

go' = [go(8go +48gl +6Ogz +4Og3 + 15g4 + 3gs) 

+ 15gi(4gi+8g2+4g3+ga) + 15gz(3gz+2gJ I 
gll = [go( 16g1+4Ogz +40g3 + 20g4+5g5) 

gz' = -~ [g0(2gZ+4g3+3g4+gB) +g1(2gl +20gZ+28g3 + 17g4+4g5) 
4 0  - DJ 

+gz(29gz+62g3+28g4+4gs) +12g3(2g3+gd 1 
1 

16(1 -Dn) 
g3' = [ go(4g3 + 6g4$3&) +3g1(4gz + 16gs + 17g4+6g5) 

+6gz( 7gz +3 Ig3 + 24g4 +6g5) +2g3( 7 Ig3 + 78g4 + 12g5) +24gd2] 

igo(g4-k g6) + gl(4g3 4- I3g4 f 8gs) +gz(3g2 f34g3 +56g4+ 24g5) 
1 

8(1 -Dn) 

1 
16(1 -Dn) 

gh = 

+8gs(6g3+13g4+4gs) +8g4(5g4+2gs) I 
82 = [g@6 +5gl(g4 + 2g5) + lOgZ(g3 +4g4 +4g5) 

+ 10g3(3g3 + 12g4+8g5) +8Og4(g4+g5) + 1 6g52 I . 
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729 
4096 

Hence Dz =- = .1780, and, among the gametes forming Fa 

63 62 60 56 48 32 
go==, g --t g --, g --, g --, g --> g6=0 '-3367 '-3367 3-3367 - 3367 5-3367 

1,416,512 
11,336,689 

whence Dt = = .1249, and D4 and subsequent terms can easily 

be calculated. 
ZIRKLE has given the requisite expressions for k = 2,3,4,  and carried out 

the calculations. In  the case of k = 2  the composition of each generation 
may be represented by a single parameter. BENNETT (1924) has solved the 
equation 

I 

which arises if we represent the gametes forming Fn by 

(where S, = 5/2). 
Here 

and 
1 1 5 13 

2Sn 3% 36S2 240s: 
n+C=Sn+log (Sn-I)+------p 

(3 
- . . . .  947 - 193 - 

1800Sn5 7560Sn6 

where C = .64018855-. An alternative solution is as follows:- 

Let the gametes forming Fn be:- 

Then 

or 

X n - 1  xn-1 1 
Ab, __ aB, -ab. 

2xn 2xn Xn 

(xn- 1)' Xn 1 
Dn = , xn+l=-+l-- 

2x3,' 2 2xn 

4) 

-k(xn - I)' 
This is a particular case of the equation Axn= solved by 

Xn 
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HALDANE (1932) in another connection. It was shown that for x >1, as in 
this case, a very approximate solution is 

n = C +  1 + log xn +-loge(+). 1-k 
Xn - k(xn-l) log (1-k) k 

Here k = 4, so 

- 
2 log(l-d/2D,) 1 

Dn log 2 2 
= C‘ +&- + - - loge Dn . ( 3 . 9 )  

It was shown that this equation has an error of about 1 percent in the 
neighbourhood of xn = 2, and is much more accurate for smaller values. It 
may be used to solve such problems as the following: “How many genera- 
tions of selection are needed to reduce the proportion of double dominants 
to 1 percent?” In Fa, the first generation for which the equation (3.5) 
holds, we substitute n=3, Dn=2/9, and find C1=.833. Substituting this 
value, and D,=.Ol, we find n512.005. Hence the value is very nearly 
reached in Flt. 

ELIMINATION OF A MULTIPLE RECESSIVE, RANDOM MATING 

Under any type of mating, selection of a multiple recessive is of course 
complete in one generation. To derive the equations for the case where the 
single genotype recessive for all k genes is eliminated we have only to note 
that the proportion of multiple recessives Z(0, k) of equation (2.2) is 
Rn =go2 and the relation between gametes of successive generations is 

m k-m 
(1-Rn)g,’=2-k~2i ,Ci c 2 j  k - m c j  Z(i, j), when m f o ,  and 

(4.1*) i s 0  j = O  

k-1 

(1-Rn)g0’=2-~E2j k c j  z(0, j ) .  
j-0 

ZIRKLE has tabulated values of R, for k =2, 3, and 4; and higher values 
of k are not known to occur. If k = 2, and p n  =g2, qn =gl, rn =go we have, as 
he points out 

pn ++(qn2 -pnrn) 
pn+l= 

1 -rn2 

1 -rn2 
qn -$(qn2 -pnrn) 

qn+l= 

rn - rn2 + +(qn2 - Prim> 
rn+i = 

1 -rn2 
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Putting qn+rn =z,, we find 
2 Zn-rn 

Zn+l=- 
1 -in2 

$(rn+zn2) -rn2 
1 -rn2 

rn+i = 4.2*) 

R,+l = rn2. 

Whence calculation is easy, since z2 =+, r2 =a. For large values of n, 
r, approximates to zn2, and Az, to -zn4, whence n = constant ++ r3, ap- 
proximately, and R, approximates to (3n +c) -~’~ .  

SELECTION OF DOMINANTS I N  A N  AUTOTETRAPLOID, RANDOM MATING 

This case is included here owing to its close similarity to the last. It is 
assumed that double reduction (HALDANE 1930) does not occur. Let the 
gametes forming F, be in the ratiospnAA :2qnAa:r,aa, wherepn+2q,,+r, 
= 1. The recessives, which are eliminated, occur in F, in the proportion 
R, = rn2, and:- 

pn +$(qn2 -pnrn) 
p n + l =  

1 -rn2 

Putting zn =qn+rn, we have 

+(rn+2zn2) -rn2 
1 -rn2 

rn+l= (5.1*> 

R, = rn2. 

As above, when n is large, R, approximates to ( 3 n + ~ ) - ~ / ~ .  Starting with 
an F1 between homozygotes, we find the following percentage values of 
R, in successive generations:--O, 2.7, 4.0, 3.671, 6.432, 2.623, 2.003, 
1.644. . . . It will be seen that the values oscillate at  first, as they do when 
there is no selection, reaching a maximum in Fs. 

SELECTION OF MULTIPLE DOMINANTS : SELF-FERTILIZATION 

A self-fertilized population consists of lines of one individual per genera- 
tion. Selection does not alter the character of these lines, but only their 
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relative proportions. If there is no selection FnV1 consists of zygotes in the 
ratios (2,-l-2) A A  :4 A~:(2”-~-2)aa,  and similarly for the other genes. 
Now (if we confine our attention to A and a)  all the aa zygotes are elimi- 
nated. But as all their descendants in later generations are also aa, the 
composition of F, is unaltered if we postpone our selection till F,-*. The 
parents of F,, after selection, are thus in the ratio 

(2-1 - 2)AA : 4A a, 

2 ” 4 +  1 
2”--‘+2 

and F, consists of (2n-1 - 1)AA : 2Aa: laa or A A  and Aa.  Hence 

the proportion of multiple dominants in F ,  is 

Comparing this with (1 -n-2)k of equation (1.2) we see that from FB to 
Fs inclusive the multiple dominants are fewer than in the case of random 
mating, but from F7 onwards more numerous. This is because the rapid 
elimination of heterozygotes causes a large number of recessives to appear 
in the first few generations. The final population consists of homozygous 
multiple dominants. 

ELIMINATION OF MULTIPLE DOMINANTS ; SELF-FERTILIZATION 

This case is extremely simple. Elimination is complete in one genera- 
tion. For clearly no multiple dominant can appear save in the progeny of 
a zygote carrying all the requisite genes, that is, itself a multiple dominant. 
But the end result is quite different from that in the case of random mat- 
ing. I n  the latter case all dominant genes are ultimately eliminated in a 
large population, and most in a small one. With self-fertilization no selec- 
tive elimination occurs after Fz, and the average number of genes for 

2k(4k-l- 3k-1 1 which a homozygote in the final population is dominant is -- 
4k - 3k 7 

or f(1-&). The multiple dominant phenotype will thus reap- 

pear if crossbreeding commences i n  this heterogeneous population. 

ELIMINATION OF MULTIPLE RECESSIVES ; SELF-FERTILIZATION 

This case is of some practical importance in allopolyploid plants such as 
wheat. As in the last case but one we can imagine selection postponed 
either until Fn-l or F, without altering the final result. The complete 
Pn-l would have consisted of 
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(*-21-n)AA, 22-"Aa, ($-21-n)aa, 

and so on for the other k - 1 genes, the total multiple recessives removed 
up to F,-l being therefore (4 - 21-nk). The additional multiple recessives 
removed from F, would therefore be (4 - 2-n)k - (4 - 21-n)k taken from a 
population of 1 - (3 - 2l-.)k of the original total. Thus the proportion of 
recessives appearing in F, is 

For large values of n this approximates to 21-n-kk. Table 1 gives the value 
of 100 R,, the percentage of multiple recessives, for Fz to Flo for k = 2 and 
3, the practically important cases. 

TABLE 1 

Percentages of multiple recessives in F,, recessives eliminated by sdjing. 

n 2 3 4 5 0 1 

k=2,100Rn 6.25 8 .3  5.90 3.502 1.909 0.9968 
k=3, 100Rn 1.5625 3.770 3.273 2.102 1.187 0.6374 

n 8 9 10 

k=2,100Rn 0.5095 0.2435 0.1295 
k=3,100Rn 0.3112 0.1649 0.08308 

As in the last case, selection does not lead to a homogeneous population. 
It ceases in any line as soon as any single recessive gene is eliminated. The 
average number of dominant genes in a homozygote of the final popula- 

k , instead of k in the case of random mating. But of course 2-21-k tion is 

the elimination of the multiple recessives is greatly speeded up by selfing. 

SELECTION OF DOMINANTS I N  A N  AUTOTETRAPLOID : SELF-FERTILIZATION 

HALDANE (1930) has shown that in a self-fertilized autotetraploid F,, 
where F, is a hybrid between two homozygotes, the proportion of reces- 
sives is 
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Hence, as above, the proportion appearing in F, when recessives are elimi- 
nated in each generation is 

rn - rn-i 
1 - r,-l 

R, = 

Hence 
5(7.5n-3-1) 

Rn = 
6(6n-1+7.5n-3-1) (7.1) 

7.5,-2 1 
6" 6 

and when n is very large it approximates to ___ or - of the total 

proportion of heterozygotes in an unselected Fn-l. 

SELECTION OF A SINGLE DOMINANT, BROTHER-SISTER MATING 

Before we can proceed to consider the selection of a multiple dominant, 
this problem, which so far as I know has never been fully treated, must be 
solved. Since aa zygotes are not allowed to breed, there are only three 
types of mating. Let these occur among the parents of Fn in the propor- 
tions x,AA XAA, ynAA XAa (and reciprocally) and znAaXAa, where 
Xn+yn+zn = 1. Then the proportion of dominants in F, is d, = 1 -azn. 
Only 3/4 of the offspring of the AaXAa matings are allowed to breed. 
Hence the contribution of these matings to the next generation is 

4 ,  9 
g A A  X A A  +-AA XAa+-AaXAa 

4 

9 

or 

1 1 1 
-AA XAA, -AA XAa,  - A a X A a .  
12 3 3 

Hence :- 
1 1 
4 12 

Xn +-yn +-zn 

Putting zn = 4 - 4dn we find 

(8.1*) 
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and 

Hence 

and 

(8.2*) 

pn is therefore the sum of the nth terms of three geometric series whose 

common ratios are the roots of 12X3 - 22X2 + 11X - 1 = 0, or 1 and- . 
1 

5+1/13 

Since z? = 1, we find 
1 1 

1 -~ 2/B 1 +- di3 
-- + (8 .3)  

pn+2 = 2 + ( 5  -413)" (5+2/13)" 

Since z? = 1 

(8 .3)  

If rn and h, are the proportions of recessives and heterozygotes re- 
spectively in F,, then r, = 1 -dn, so from equation (8.2) 

1 
1 -rn 

12(1 -r,,+l) 

1 + 10rn+i -- 
rn+2 = (8.4") 

Pn-Pn+l 
P n  

from which r, is easily calculated, since r2=t, r3=+, Since r n =  9 

then from equation (8.3), 

Hence the values of rn ultimately approximate to ( 1 -- ' )(5 - 2 / 1 3 ) 3 - n ,  
22/13 

a geometric series whose common ratio is .717, thus diminishing more 
rapidly than in the case of random mating. 
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hn = 4 (y n + Zn) 

= $(13dn- 12dn+ldn - 1) 
8 = rn+l( 1 - rn) - $rn 

(8.6*) 

h, 
whence it is readily calculated. When n is large the value of - approxi- 

rn 

j or 5.07. Hence h, approximates to a geometric series mates to 

whose common ratio is .717, and it diminishes more rapidly than in the 
case of brother-sister mating without selection, where the common ratio 

is - j or .809. Table 2 gives the values of rn and h, for the first 12 

generations, calculated from equations (8.4) and (8.6). They are compared 
with the corresponding values in the case of random mating. It will be seen 
that after F3 the proportion of homozygous dominants is increased by in- 
breeding, that of heterozygotes diminished. However the proportion of 
recessives between Fa and Fll inclusive is higher when inbreeding is prac- 
ticed than when mating is a t  random. It may be remarked that there is 
no advantage in beginning brother-sister mating before Fa, since the Fz 
from two pure lines are all as closely related to one another genetically 
as if they were sibs. 

In practice the elimination of recessive genes could of course be increased 
still further either by a refusal to breed from individuals with recessive 
sibs, or better, by test matings with recessives. But the consideration of 
this somewhat artificial case is necessary if we are to solve the next prob- 
lem. 

TABLE 2 

S + 2 2 / B  
3 

1 
G l  

" D O H  MATINQ BROTER-SIE'IER MATINQ 
n RECESSIVES ETEROZYQOTELI RECESFAVES (In) KETEROZYWTEB ( h d  

1 0 1.00 0 1.00 
2 .25 .so .25 .50 

3 .1 .4 .1  .4 

4 ,0625 ,375 ,072916 ,35416 
5 ,0400 ,3200 ,054307 .27341 

6 .036 .27 ,040924 .20726 
7 ,020408 ,2449 .030569 .15497 
8 ,015625 ,21875 .022609 .11464 
9 ,012346 .19753 .016555 ,084109 

10 .OlOO .la00 ,012097 ,061335 
11 .008265 ,165289 ,0087854 ,045 1 15 

. .  

12 .00694 ,1527 ,0063392 ,032127 
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SELECTION OF MULTIPLE DOMINANTS, BROTHER-SISTER MATING 

The situation is very similar to that in the case of random mating. All 
the zygotes recessive for any one of the k genes are eliminated a t  once in 
each generation. The process of the last paragraph thus takes place for 
each gene separately. And these processes are independent. So to find the 
proportion of multiple dominants in F ,  we have only to put 

Dn=(l-rn)k (9.1*) 

where r, is given by equation (8.5) or table 2. Thus in F7 of an inbred popu- 
lation a fraction .96943 carry any given one of the dominant genes, and 
.96943k carry all of them. A fraction 1-h,-r, or 31446 of F7 is homo- 
zygous for any one dominant gene, a fraction (1 -hn-rn)k or .S1446k for 
all of them. Table 3 gives the results fork = 10, with random mating results 
for comparison. It will be seen that up to Flz inbreeding slightly slows 
down the actual appearance of dominants, but greatly increases their 
genetic purity. Thus in Flo 53 percent of the dominants are homozygous 
in the case of inbreeding, and only 13 percent in that of random mating. 

Again there is no need to practice brother-sister mating before FB, and 
it would be practicable to begin it in FB even if as many as 10 genes were 
concerned. The process of selection could of course be speeded up if fami- 
lies containing any recessives were rejected, which would be practicable 
after about Fs. 

TABLE 3 
Composition of F ,  when only multiple dominants for 10 genes are bred from. 

U N D O M  MATINQ BEOTFIER-SISTER MATINQ 

n TOTAL 1O-ple EOMOZYQOUB TOTAL IO-ple EOMOZYQOUS 
DOMINANTS IO-ple DOMINANTS IO-ple 

DOMINANTS DOMINAWIS 

1 1 .o 0 1 .o 0 
2 ,0563 9.5x10-' . 0563 9 . 5 X  lo-' 
3 ,3080 .00030 .3080 ,00030 
4 .5244 ,00317 ,4690 ,00381 
5 ,6648 ,01152 . ,5722 ,01886 
6 ,7720 ,02578 ,6585 ,05769 
7 .8137 .04582 ,7331 .1284 
8 .8543 ,06921 .7956 ,2285 
9 .8832 ,09483 ,8453 .3460 

10 ,9043 ,1215 ,8854 .4665 
11 .9203 .1486 .9155 .5746 
12 .9327 .1755 .9385 ,6754 

ELIMINATION OF MULTIPLE DOMINANTS : BROTHER-SISTER MATING 

The population in Fz and later consists of pairs of mated zygotes, apart 
from the multiple dominants, which are eliminated. Thus mating pairs 
fall into four classes. 
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1. Pairs giving only multiple dominants. 
2. Pairs giving multiple dominants and other genotypes among their 

3. Pairs giving multiple dominants and other genotypes both among 

4. Pairs never giving multiple dominants. 

Clearly it is only class 3 which contribute multiple dominants to re- 
mote generations. 

A consideration of the case when k = 2 will illustrate the principles in- 
volved. Nine-sixteenths of Fz are double dominants, so Dz =9/16. The five 
genotypes which are the parents of F3 occur in the proportions: 

immediate off spring, but no multiple dominants later. 

their immediate progeny and in later generations. 

1 1 2 2 1 
7 7 7 7 7 

-AAbb, -uuBB, -Aabb, -~aBb ,  - ~ ~ b b .  

The matings occur with the following frequencies:- 
Class 1. 2/49 AAbbXaaBB 
Class 2. 4/49 AAbbXaaBb, 4/49 aaBBXAabb 
Class 3. 8/49 AabbXaaBb 
Class 4. 31/49 other matings, for example, 1/49 AAbbXAAbb, 4/49 

Aabb Xaabb. 

That is to say 2/49 give all double dominants, 8/49 give 50 percent, and 
8/49 give 25 percent. So D3 = 8/49, and 41/49 of Fa is available for mating. 
Only class 3 matings give further double dominants. A mating of class 3 
gives 25 percent double dominants, and matings which can be symbolized 

3 1  
4 9  

by 
-.- (Aabb +aaBb +aabb)2. 

If there is a proportion pn of such matings among the parents of Fn, 
then Dn =tpn,  
and 

If we put 

we find 

so that 
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Since 6/41 of the matings of the parents of F4 are derived from families 
of the type (Aabb+aaBb+aabb), 

2 6  4 x5 122 
~4 123 

p4 =jy'G =z 1 and -=---. 

Hence a = 609 X6-5 and 

~ n + i  1+609X6n-4 
~- - 

x, 6+609X6n-4 

so 
Xn+1 5 D, = 1 -__ = 
x, 6+609X6n-5 

(10.1) 

from F4 onwards. Hence the successive values of D,, the proportion of 

9 8  
16 49 

double dominants in successive generations from Fz onwards are - 1 - 1  

1 1 1  
- 1 - 1  - and so on. The corresponding values for a random mating 
123 732 3186 

9 8 200 192,200 
16 49 1681' 2,193,361) 

population, derived from equation (3.3), are - t - 1 - 

.0658, et cetera which diminish far more slowly. 
The final population can readily be calculated. Such a mating as Aabb  

Xaabb ultimately gives a population of 1/4 AAbb, 3/4 aabb and so on. 
The mating AabbXaaBb gives 
ultimately leading to 

1 
7 

-AAbb, 

So the final population is 

1 1  

1/6 similar matings and 7/12 matings 

1 5 
7 7 

-uuBB, -aabb 

or 1/10 (AAbb+aaBB+Saabb).  The ultimate population from all the Fz 
mating types is therefore in the ratios 54 A A b b  : 54 a a B B  : 95 aabb. 

In  general the proportion of class 4 matings, which never give any mul- 
tiple dominants, among the survivors of F, can easily be shown to be 

16k - 15k 
a quantity which rises from 63.3 percent when k = 2 to 86.6 per- 

(4k - 3k) 



ARTIFICIAL SELECTION 42 7 

c < 

cent when k = 10. In  all cases a majority of the matings of Fz never give 
multiple dominants, and thus if a few lines are started, most of them will 
give the desired phenotype only, though they will give different geno- 
types. There is thus no practical value in working out expressions for D, 
for different values of k. 

AABb XAabb" 4 AaBb XAAbb" 
' AABBXAABB 

AABBXAABb" 
AABBXAAbb" h AABb XaaBb" 
A A B b X A A B b  i AAbb XaaBB 
AABb XAAbb" j AAbb XAabb* 
AAbb XAAbb" k AAbb XaaBb" 
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(1 -R') j' = 

(1-R')k'= 

(1 - R')l' c 

(1 -Rf)mf = 

(1-R')p'= 

(1 - R')q'= 

Hence 

J. B. S. HALDANE 

1 1  1 1 1 1  
-jn +-Iu + - m n t p n  2 30 14 3 -fu + -n+ 8 8  

1 1  
-1, + -mu 30 28 

1 1 1 1 1  1 1 1  1 
-dn+*n+-fn+-n+Thn+ in + --kn+-1. +-mu+ z n  12 4 16 16 4 15 14 

1 1 1  1 2 3  1 4 +-n+--hn+ 16 8 4 
1 1 1  1 1 1 5 1 1  zfn + -n+--hn+ 16 16 4 4 3 0 5 6 3  6 

1 1  1 
-1, + -mn+ 30 14 

P" --kn+--ln + -mu+ 2 15 14 

-j, + --k,+--l, + -mn+--Pn+--qn 

Pn 
(10.2*) 

1 1 4649 
R ~ = E ,  R a = z ,  &=-- - 4.48 percent 

103680 

whereas with random mating (from equation 4.2) 

1 1 361 
16 25 11664 

R2 =- 9 R ~ = - J  Rq=-=3.10percent. 

Thus at  first somewhat more double recessives appear as the result of 
inbreeding. However it is clear that in the case of inbreeding Rn ultimately 
approximates to a geometrical series, and consequently diminishes far more 
rapidly than in the case of random mating. For practical purposes the 

31 
225- 13" per- 

value of Cn is even more important than that of R,.cz =- - 

14319 
45360 

cent, while cB=-=31.6 percent. That is to say 31.6 percent of all FI 

mated pairs will give no double recessives. Hence even two generations of 
brother-sister mating will have eliminated the possibility of producing 
double recessives from many lines. 

For values of k exceeding 2 the equations become quite excessively com- 
plex. However cz, the probability that a given breeding pair in Fz (after 
eliminating the multiple recessives) will never, in any later generation, 
yield multiple recessives, is 

16k- lSk 
c2 = 

(4k- 1)2 
(10.3) 

The values of cz as percentages from k = l  to 5 inclusive are 11.1, 13.7, 
18.17, 22.93, 27.63. Thus if k = 5  rather over 1/4 of all the matings of 
surviving Fz would give no recessives. cz increases rather slowly, only reach- 
ing 47.55 percent when k = 10, and 72.49 percent when k =20. 
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Just as in the case where multiple dominants are eliminated, the final 
population is not genetically homogeneous in the case of brother-sister 
mating. If mating were re-started between different lines, multiple re- 
cessives might appear in the second, though not in the first, generation. 

The rather delicate problem of brother-sister mating in an autopolyploid 
is reserved for a future publication. 

SUMMARY 

Expressions are found for the effects of selection on populations, both 
random mating, selfed and inbred, where the character selected depends 
upon several genes, and (as in the case of crosses between pure lines) each 
gene pair is present in the same ratio. 
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A mathematical theory of natural and artificial selection.
Part IX. Rapid selection. By Mr J. B. S. HALDANE, Trinity
College.

[Received 2 February, read 7 March, 1932.]

In Part I of this series (l) it was proved that in a random
mating population in which the ratio between the numbers of two
genes in the nth generation was un, and the proportion of recessives
therefore («„ + 1)~2, the coefficient of selection being k, then

_k- (1)

Hence, if xn = 1 + l/wn, we have
k{xn-lf

# n + l = &'n •
Xn

I t has since been shown (2) that, if y is a given function of x,

yr = (-jA y, and <cn+1 = xn + ky, then

k9 1
...\ dx,

provided that y is regular and does not vanish in the interval
considered, and that the series converges uniformly. I t was also
pointed out that the coefficient of y~xyir is the ( r + l ) t h term in
the expansion of {log (1 + k)}~\

In our case y = — (x — lf/x, hence
!X"T - x

24a6

k* (x - 1 )2 (19a:4 + 76a* + 220a* + 360* + 105)
+ 720a;7 + - "

(log xn - 2xn-* - 2xn~* + § xn~

+ $xn-* + ^xn-<

S-2£xn-*)+..., (2)

J^ (19 \ogxn -
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where G does not vary with n. Now since xn>\, the error due to

neglecting all terms except the logarithmic terms and -?—.
tc \xn 1)

is very small when xn and x0 are large, and is always less than
U 25F 347P
24 + 288 8640 + " "

Although I have been unable to prove that this series converges,
it will be seen that its sum can be neglected without serious error,
even when \k\ > 1. The remaining terms, when 1 > jfc^— 1, give

71=
log1 xn 1 — k. xn

This summation is only justified in theory if 1 > k ^ — 1, but it will
be seen later that it holds even when k< — 1. Since xn = 1 + l/un,
we can write the above equation as

_Un~Uo
71 k~

Though series (2) is doubtless more accurate, equation (3) is
quite satisfactory for ordinary purposes, k cannot exceed 1, and
the equation is exact when k = 1, or is infinitesimal, and approxi-
mate for intermediate values. When k is negative it is also
approximate. I t can also be shown to attain any desired degree
of accuracy if both un and «0 are sufficiently large or small. Its
accuracy can readily be tested by substituting values of no and «i
calculated from equation (1) for any values of u0 and k, and then
calculating n, which should equal unity were equation (3) exact.

Mo=l, «i = £, n= 10135,

u0=100, M!= 100-4975, n = 10011,

^ = •01, wi=-019804, n = 10032.

Hence in this case the error probably does not exceed 2 °/0.
If k = 09,

J«O=1, i*1=18i , ?i = 09070,

7/o = 100, ?«! = 1008991, n = 10068,

«o = -Ol, M1=09l8, w= 10277.

The error is thus under 4 °/o. Finally, if k = — 4,

1^=1, m =3, n= 11042,

w0 =100, «x = 96-1905, 71 = 0-9606,

uo = 0 1 , -ui =002016, 71 = 10361.
VOL. XXVIII. PART II. 1 6
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The error here exceeds 10 % over a certain range of values of u.
But it is to be noted that these values of k refer to extremely
intense selection. Thus, when k = — 4, five recessives survive for
every dominant, and when k = 0"9, ten dominants for every recessive.
Such intense selection can hardly ever, in the course of evolution,
have been the direct cause of large changes in a population.

Elton (3) has expressed the opinion that occasional intense
selection, for example during periodic famines and plagues, may
be more efficient than less intense selection acting in every
generation. This view can be examined quantitatively. Consider
two populations, in the first of which selection of intensity k occurs
in every generation, whilst in the second selection occurs with
intensity mk in every with generation, where jm&|< 1. Then from
equation (2) it follows that in the first population the number of
generations needed to change UQ to un is approximately

n = £ (Un - Mo + log Un - log Mo) - \ [log (tin2 + Un) - log (Mo2 + Mo)],

and in the second population, approximately,
"I ' AH

" ' = k ("" ~ w° + l l ^

assuming that squares of km can be neglected. Since m > 1, the
second time is shorter than the first if un(un + 1) > Mo(«o + 1),
regardless of the sign of k, i.e. if un > u0. Thus when selection is
favouring dominants, it is more efficient if concentrated in a series
of cataclysms, but when it is favouring recessives the opposite is
the case. But unless \mk\ is fairly large the difference is un-
important.

We can also compare the time taken, with selection of the
same intensity, to change u from a to b, when dominants are
favoured (k positive), with the time taken for the change from b
to a when recessives are favoured (k negative). From equation (3),
putting '«o = "', M» = b, the time needed for the first change is

b-a ,

Changing the sign of k, and putting iio = b, un = n, we find that
the time needed for the second change is

, b — a . /l+l/b\/,, ., . . . l+k.
n — —j- log I —r - j - I / {log ( I + / • ) } + ----•• log

Hence
.-fc)-iog(i+*n,..
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This is positive, since k is positive and b> a. Hence on the
above convention selection appears to be more effective when
dominants are favoured. But it is illegitimate to regard a selection
measured by — k as the inverse of one measured by k unless both
are very small. Thus when k = •£, two dominants survive for every
recessive, but when k = — £, only one-and-a-half recessives survive
for every dominant. To obtain a fairer comparison we put 1— k=e~",
and change the sign of K when selection is reversed. Equation (3)
now becomes

Hence the time taken to change u from a to b when K is positive is

b-a 1
l

and the time for the converse change is

, b-a 1.
l • l-e-'

 lo£

so that n — n'=b — a+ log (- ),

which is positive. Thus selection is more rapid if recessives are
favoured. The difference is however only significant if b is large,
that is to say recessives very rare in one of the populations con-
sidered. This result was to be expected, since if all dominants
are killed off, i.e. & = «= — <», selection is complete in one genera-
tion, whilst if all recessives are killed off, i.e. k= 1, * = oo , selection
is a relatively slow process. The number * occurring in equation (4)
is the difference of the Malthusian parameters, as defined by
Fisher (4), of the dominants and recessives. It approximates to k
when both are small.

The problem which is here solved is the simplest, though
perhaps the most important, of a large number. When selection
acts at different rates in the two sexes, or when it acts on a sex-
linked character, or one determined by several genes, or by one
gene in a polyploid, we have to solve two or more simultaneous
non-linear finite difference equations. When generations are not
separate, we have, in general, to solve a set of at least four simul-
taneous non-linear integral equations. These equations have been
stated in other parts of this series, and have been approximately
solved when selection is not intense. But their complete solution
is desirable for a discussion of problems raised by eugenics and
artificial selection.
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Summary.

Equations (3) and (4) describe the changes undergone by a
Mendelian population mating at random, and under intense
selection.
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